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Abstract - In order to make a connection between the 
theoretical and practical aspects of computer 
architecture/organization courses at undergraduate and 
graduate levels, many software tools have been used in 
the past. If a large design-space needs to be explored 
using detailed simulations of a few industry-standard 
benchmark programs, the computational and time 
resources can become an impediment, thus placing a 
practical limit on the number of experiments, a student 
can complete in one semester. In this paper, we propose 
a software tool for predicting processor system 
performance. The tool can be used for teaching how the 
hardware configurations (processor microarchitecture, 
memory hierarchy, etc.) and/or software (benchmark 
program) characteristics affect the system throughput 
(as represented by instructions completed per cycle). Use 
of the proposed tool in computer architecture classes has 
demonstrated its effectiveness in improving the students' 
understanding of the related topics.  
 
Index Terms – Computer architecture, Simulation tools, 
Neural method, Performance prediction model, Web-based 
education.  

INTRODUCTION 

Computer architecture and organization are considered ones 
of the most difficult courses both to teach and to learn. It is 
usually a challenge to teach a subject in an environment 
where the covered topics are advancing very rapidly. In such 
conditions, the instructors must be up to date with the state 
of the art. At the same time, they should continuously revise 
their lectures, tutorials, problem sets, lab exercises, and 
exams to match the new development in the covered topics. 
For example, today’s optical storage material should be 
revised to cover the newly released HD DVD and Blu-Ray 
technologies in addition to the widely-used CD and DVD 
technologies. Additionally, the lab component in computer 
architecture courses requires the design and execution of 
both hardware and software experiments. This component 
should be designed with extra care to make a clear link 
between the theory and the practical labs.  

Learning computer architecture is also challenging 
because of its high degree of complexity. It requires the 
understanding of several interrelated subjects that include 
system design, electronic circuits, digital logic, assembly-
language programming, as well as application level 
programming, discrete math and performance analysis. 

In order to fill the gap between the theoretical and 
practical aspects of computer architecture/organization 
courses at undergraduate and graduate levels, many software 
tools have been created and used in the past. These tools 
vary in how they handle digital system simulation. They 
usually offer means for adding/removing hardware 
components, viewing simulation results, and conducting 
statistical analysis of system performance. The nature of 
these tools varies widely in several dimensions  [1]− [3] that 
include: simulation level (cycle-accurate, overall behavior), 
level of detail (functional blocks, RTL), scope (processor 
only, system level), as well as user-interface (graphical or 
command-line). Examples of some basic simulators are: 
Babbage's analytical engine, CASLE, CPU-SIM, EasyCPU, 
Little Man Computer, etc. The medium-complexity 
simulators include: SPIM, MIPSpim, THRSim11, etc. and 
some advanced simulators are: DLXSim, RSIM, OSim, 
SimpleScalar, etc.  

If a large design-space needs to be explored using 
detailed simulations of a few industry-standard benchmark 
programs, the computational and time resources can place a 
practical hurdle on the number of experiments a student can 
complete in one semester. Consider the situation when the 
students are asked to study the effect of changing several 
parameters (e.g., number of integer multipliers, number of 
float point multipliers, fetch queue width, etc.) on the 
computer system performance. To achieve that, the students 
have to run several sets of simulations. In each set, they 
should change only a single parameter and measure the 
system performance while a benchmark program is 
executed. It is obvious that running these experiments using 
a detailed simulation-based tool (e.g., cycle-accurate 
simulator) will consume a large amount of computational 
and time resources.  

In this paper, we propose a software tool, named 
PerfPred, for predicting processor system performance; the 
tool can be used for teaching how the hardware 
configurations (processor microarchitecture, memory 
hierarchy, etc.) and/or software (benchmark program) 
characteristics affect the system throughput. Examples of 
hardware parameters are: issue-width, ALU count, cache 
size, cache configuration, branch prediction scheme, etc. 
The software parameters are determined by the benchmark 
program selected for execution. PerfPred provides the 
output in terms of instructions per cycle (IPC) which is a 
widely-used metric for a processor system throughput. The 
core of PerfPred is a machine-learnt model (based on neural 
network (NN) methodology) that speeds the task of system 
performance prediction to less than a second; this is several 
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orders of magnitude faster than detailed simulation-based 
methods  [4]. PrefPred has a user-friendly web-based 
interface, which removes the need for program installation 
on individual machines.  

NN’s ability to model the behavior of non-linear and 
high-dimensional systems has been used extensively in the 
past. NNs comprise of simple processing entities called 
neurons which emulate the characteristics of biological 
neurons (Figure 1). Interconnections of neurons parallelize 
the operations that are usually performed sequentially by the 
traditional computers. NN-model creation (training) 
involves repeated presentation of known input-output sets 
(training examples) to the network. With each cycle of 
training (epoch), NN’s internal structure (specifically, the 
neuron weights) is adjusted in an attempt to bring the NN-
output(s) closer to those of the training examples    [5].  

In the next section of this paper, we review the previous 
work related to teaching of computer architecture. Then we 
describe how a NN is used to build the nucleus of PerfPred. 
The user interface is also discussed, followed by two use 
cases of PerfPred. The last section of this paper presents the 
conclusions as well as future extensions to the current work.  

PREVIOUS WORK 

Due to the complexity of the computer architecture and 
organization courses, a variety of educational tools have 
been developed and used by several education institutions 
worldwide to ease this complexity and improve the quality 
of the teaching process. These tools differ greatly in their 
complexity, simulation level, and user interface. Early tools 
were mainly text-based, while most of the current ones have 
graphical interfaces that allow them to provide visual 
representation to the internal operation of a computer 
system. To help instructors select the right tool for teaching 
a specific computer architecture topic, an orientation to the 
current state-of-the-art in computer architecture education 
resources is provided in  [6]. The orientation illustrates five 
major websites dedicated for computer architecture 
educational resources. Throughout the orientation, the 
authors attempt to identify the gaps between the current 
resources available on the Web and the resources needed by 
the instructors and try to find why this gap exists.  

Previous work in computer architecture tools can be 
divided into three main categories  [7]. The first category 

includes simple tools that are mainly used in the 
introductory undergraduate courses. The second category 
includes more advanced tools that are largely used in 
advanced microarchitecture courses. These tools focus more 
on sophisticated parallel architectures with multiple CPUs. 
Finally, the third category comprises the tools dedicated to 
memory subsystem category which focus on the interactions 
among the CPU, main memory, and cache memory. 

Some of the tools in the first category, such as the Little 
Man Computer  [8], use only simple addressing modes, 
limited instruction sets, and very simple memory models. 
While, other tools (belonging to the third category) such as 
LC2  [9], SPIM  [10], and SPIMSAL  [11] tend to include 
more realistic set of addressing modes, more complete 
instruction sets, more realistic memory hierarchies, and 
sometimes an interrupt mechanism.  

The third category (more advanced tools) includes 
SimpleScalar  [12], DLX, MipSim  [13] and Mic-1  [14]. 
These tools are designed to allow the observation of 
machine language execution at the microcode level (e.g., 
data paths, control units). Advanced tools can be used to 
investigate the advantages and disadvantages (e.g., 
efficiency, complexity) of performance enhancing 
techniques such as pipelining, branch prediction and 
instruction-level parallelism. Some of these simulators are 
microprogrammable, allowing students to experiment with 
the design of instruction sets. The third category also 
includes tools for simulating multiprocessor architecture. 
These tools (e.g., GEMS  [15], RSIM  [16], WWT2  [17]) 
allow students to study the effect of different design 
parameters (e.g., memory sharing and locking schemes, 
instruction level parallelism, etc.) on the performance of 
complicated, multithreaded workloads such as databases and 
web servers. 

The effect of the memory hierarchy (cache, main, and 
virtual) on the performance of computer systems is a 
mandatory topic in any undergraduate computer 
architecture/organization course. Therefore, researchers 
have paid great attention to the development of realistic 
memory simulation tools. Some of the well known tools 
include Dinero IV  [18], VirtualMemory  [19] and SPMCache 
 [20]. Dinero IV is a cache simulator that supports various 
types of caches, i.e., direct mapped, set associative and fully 
associative. Block sizes, associativity and other parameters 
may also be specified. The tool can also be used to simulate 
multiple levels of cache as well as for classifying the type of 
misses (compulsory, conflict and capacity).   

SMPCache is a trace-driven simulator for analysis and 
teaching of cache memory systems on symmetric 
multiprocessors. It has a graphic user-interface that allows 
the students to experiment different theoretical aspects of 
cache memories and multiprocessors. Some of the 
parameters that the students can study are: program locality; 
influence of number of processors, cache coherence 
protocols, schemes for bus arbitration, mapping, 
replacement policies, cache size (blocks in cache), number 
of cache sets (for set-associative caches), number of words 
by block (memory block size), and the word size. However, 
a disadvantage of SMPCache is its slow simulation speed. 
VirtualMemory presents a graphical interface allowing the 

FIGURE 1 
A SIMPLE NEURAL NETWORK CONTAINING THREE LAYERS: INPUT, HIDDEN, 

AND OUTPUT. 
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simulation of virtual memory (main memory, hard disk and 
page table) and exhibits statistical data during the 
simulation.  

NN-BASED PERFPRED TOOL DEVELOPMENT 

The NN-based PerfPred proposed in this paper includes 
different microarchitectural (hardware) parameters to predict 
the processor system performance which is measured in 
instructions completed per cycle (IPC). Each hardware 
parameter is represented by a single neuron in the input 
layer. In addition, six neurons represent six different 
SPEC2000 CPU integer benchmarks (i.e., bzip2, crafty, eon, 
mcf, twolf, and vortex)   [21]. There is a single hidden layer in 
the model. One hidden layer is considered sufficient to 
represent most non-linear systems   [5]. The model output 
(IPC) is produced by single output neuron. The general 
hierarchy of this model resembles the NN shown in Figure 
1. Numerous experiments were carried out to determine a 
suitable count of neurons in the hidden layer of the NN 
(Details of these experiments are discussed shortly).  

The NN presented here models a superscalar processor 
system, which in turn is based on SimpleScalar’s sim-
outorder architecture   [12]. Table 1 lists different 
configurations of sim-outorder which were used to run more 
than 6000 simulations. The time for a single simulation on 
an x86-based Linux machine ranged from 0.5 to 2 hours. Six 
SPEC2000 CPU integer benchmarks with their respective 
‘test’ inputs were used in these simulations. The simulations 
were fast-forwarded by 100 million instructions while the 
maximum number of instructions was limited to 500 million 
  [12],  [21]. 

The data acquired from sim-outorder simulations 
needed to be re-scaled and transformed. As widely known, 
this step is required to make sure that all of NN inputs 
equitably influence the training process. As an example, the 
log2 transformation was used for the values: {2, 4, 8, 16, 32, 
64, and 128}. After transformation, the input values were 
scaled to the range [0, 1].  

The neural or analytical models can be several orders 
of magnitude faster than simulation models but a price may 
have to be paid in terms of accuracy. 20-39% error ranges 
were reported in many research works  [22]- [26]. For the 
NN models, we opted for 15% error allowance for training 
and validating. Validation was done with the input-output 
examples (10% of total dataset); the later were not shown to 
the NN during training.  

Brain-Maker (version 3.75), an MS-Windows based 
software package  [27] was used to create the NN models. 
This package uses feed-forward and back-propagation 
methodology of neural modeling.  

In our NN models, numbers of input and output neurons 
were fixed. However, in an effort to find an optimum-sized 
NN model, hidden layer sizes from 2 to 30 were 
experimented with. As expected, the more the number of 
hidden neurons, the more the model’s training iteration 
count. Each NN-configuration was trained many times with 
randomly-set neuron weights at the training onset, to reduce 
the chances of running into local minima. As mentioned 
earlier, 90% of the complete data set was used for training 
purposes, while the other 10% was used for test/validate the 
NNs’ predictive abilities.  

The NN model training and validation statistics are 
graphically shown in Figure 2. We notice that with a count 
of just 8 neurons in the hidden layer, training accuracy 
(defined by the number of training sets predicted within the 
desired error allowance) of nearly 85% was attained. With 8 
or more neurons in the hidden layer, the validation accuracy 
(defined by the number of validation sets predicted within 
the desired error allowance) remained quite close to the 
training accuracy, thus demonstrating the model’s learning 
effectiveness. Further more, increasing the hidden layer size 
beyond 8 neurons did not lead to any significant 
improvement in prediction accuracy.  

TABLE 1 
PARAMETERS USED FOR SIM-OUTORDER SIMULATIONS AND FOR 

SUBSEQUENT PERFPRED MODEL CREATION AND TESTING 
Parameter 
Type  

Input Neuron Description Range 

Hardware Load/store queue (instructions) 2, 4, 8, 16, 32, 64, 128 
Hardware Fetch queue width 

(instructions) 
2, 4, 8, 16, 32, 64, 128 

Hardware Decode width 
(instructions) 

1, 2, 4, 8, 16, 32, 64 

Hardware Issue width in a cycle 1, 2, 4, 8, 16, 32, 64 
Hardware Commit width in a cycle 1, 2, 4, 8, 16, 32, 64 
Hardware Register update unit (instructions) 2, 4, 8, 16, 32, 64, 128 
Hardware Ratio of CPU and bus speeds 2, 4, 8, 16, 32, 64, 128 
Hardware Integer ALUs 1, 2, 3, 4, 5, 6, 7, 8 
Hardware Integer multipliers 1, 2, 3, 4, 5, 6, 7, 8 
Hardware Branch prediction scheme Taken, Not-taken, 

Perfect (represented as 
‘symbol’ in NN) 

Hardware Branch misprediction penalty 
(cycles) 

1, 2, 3, 4, 6, 8, 12, 16, 24, 
32, 48, 64, 96, 128 

Software bzip2 (benchmark) 0, 1 
Software crafty (benchmark) 0, 1 
Software eon (benchmark) 0, 1 
Software mcf (benchmark) 0, 1 
Software twolf (benchmark) 0, 1 
Software vortex (benchmark) 0, 1 
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FIGURE 2 

TRAINING AND VALIDATION ACCURACIES AS A FUNCTION OF THE SIZE OF 
THE SINGLE HIDDEN LAYER IN THE NN MODEL. BRAIN MAKER 

PARAMETERS: TRAINING/TESTING TOLERANCE = 0.15; LEARNING RATE 
ADJUSTMENT TYPE = HEURISTIC; INITIAL NEURON WEIGHTS SET 

RANDOMLY. 
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Notice that all hardware (and software) parameters 
(listed in Table 1) were used in building the currently 
present NN models. We are extending the current research 
to study the contribution of each input parameter to the 
model. This investigation may lead to a fewer number of 
neurons in the input and hidden layers. 

PerfPred User Interface 

A web-browser interface developed (in PHP) allows user to 
easily select the input parameters (see Figure 3). The users 
pick a given parameter using one of the ‘radio-buttons’ (near 
the middle of the screen). The range for this parameter is 
entered in two boxes (labeled ‘To’ and ‘From’) on the left of 
the radio button. All other parameters take a single value 
that is entered in the ‘From’ box. Once the input parameters 
are selected, the ‘Plot’ or ‘Show values’ button is pressed. 
Based on this selection, the predicted values are either 
plotted or listed in a text box. The text box allows the user to 
save the predicted values and export them into a different 
program such as MS-Excel. Values from multiple runs can 
be combined into a single plot; two such examples are 
shown in the next section.  

PERFPRED USE CASES 

In this section, we present two examples of the insight a user 
can gain by using PerfPred performance prediction tool. We 
chose 3 benchmarks (bzip2, crafty, and eon) to study the 
impact of varying the number of instructions issued per 
cycle (issue width) on the processor throughput. We varied 
the issue width from 2 to 64. For all benchmarks, we 
observe the general trend that IPC increases as more 
instructions are issued in a cycle (see Figure 4). However, 
the incremental gains made due to added issue hardware 
diminish when we go beyond 8 instructions. This limitation 
may come from the limited parallelism inherent in the 
programs themselves.  

As a second example, Figure 5 shows the behavior of 
the processor system in response to branch misprediction, 
for 3 different benchmarks mcf, twolf and vortex. The 
number of cycles taken after a mispredicted branch ranges 

from 1 to 128. Expectedly, the longer it takes to recover 
from a branch misprediction, the lower the throughput (IPC) 
of the processor. The IPC curves for all the benchmarks are 
similar in shape. We notice that vortex shows less sensitivity 
to increased misprediction penalty than mcf and twolf. 
Characterization of basic blocks of these programs can shed 
more light on the reasons for the sensitivity. 

Note that the above results could have been acquired by 
running 21 actual simulations for the first use case and 42 
simulations for the second use case; both of these would 
have taken a day or more of computing time on one of 
today’s PCs. In comparison, the same or more amount of 
information can be acquired by running the PerfPred tool in 
less than a second.  

To test the effectiveness of PerfPred as a teaching tool, 
we used it in one of the undergraduate level computer 
architecture courses in the previous (Fall 2006) semester. 
The student perception of the effect of changing different 
microarchitectural features in a processor was evaluated 
before and after the tool introduction. Subsequent testing 
showed some improvement in understanding of the 
concepts. Continued use of the tool in the current and future 
semesters is expected to reinforce the tool’s usefulness.  

FIGURE 3 
WEB-BASED INTERFACE OF PERFPRED. IN THIS EXAMPLE, 'MISS PENALTY 

OF BRANCH PREDICTOR' IS SELECTED TO STUDY ITS EFFECT ON THE SYSTEM 
THROUGHPUT. 

0.00

0.50

1.00

1.50

2.00

2.50

1 10 100
Issue width (instructions)

P
ro

ce
ss

or
 th

ro
ug

hp
ut

 (I
P

C
)

bzip2 crafty eon

FIGURE 4 
SENSITIVITY OF PROCESSOR THROUGHPUT (IPC) TO ISSUE WIDTH WHILE 

ALL OTHER PARAMETERS ARE FIXED. INITIALLY, ISSUING MORE 
INSTRUCTIONS IN A CYCLE HELPS IMPROVES THE PROCESSOR 

THROUGHPUT. HOWEVER, THIS INCREASE STOPS AS THE ISSUE WIDTH 
EXCEEDS 8 INSTRUCTIONS.  
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FIGURE 5 
SENSITIVITY OF PROCESSOR THROUGHPUT TO ISSUE WIDTH WHILE ALL 

OTHER PARAMETERS ARE FIXED. AS EXPECTED, THE PROCESSOR COMPLETES 
FEWER INSTRUCTIONS PER CYCLE AS THE BRANCH MISPREDICTION LATENCY.
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CONCLUSIONS 

In this paper, we have presented an NN-based processor 
tool/model for performance prediction; the tool was created 
using the data acquired from a large number of simulations 
covering a wide area of superscalar processor design space. 
The resultant model provided fast and reasonably accurate 
estimates of the throughput of the processor. Prediction 
accuracies of 85% or better were observed, which are 
comparable to related NN models previously reported. The 
proposed performance prediction tool can be used for the 
study of microarchitectural trade-offs in a processor system 
design. The tool can also be used effectively in computer 
science courses related to compiler optimization. 

In pedagogical settings, the students gain the theoretical 
knowledge of computer architecture/organization in the 
lectures; subsequent laboratory assignments using PerfPred 
reinforce their learning of factors affecting the computer 
system performance. Use of tools similar to PrefPred (e.g., 
SPMCache) in computer architecture classes has 
demonstrated its effectiveness in improving the students' 
understanding of the related topics. It is expected that using 
PrefPred will significantly help instructors close the gap 
between the theoretical and practical aspects of computer 
architecture/organization courses 

Further enhancements to the proposed predictive model 
are a subject of our ongoing research. The improvements 
include: investigation of methods for improved prediction 
accuracy; dimension reduction of the model; inclusion of a 
program’s dynamic characteristics as input parameters, etc. 
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