
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

An Online Tool for Teaching Design Trade-offs in
Computer Architecture

AB, CD

College of XY, ABC University, City, State, Country
ab@domain, cd@domain

Abstract - In order to make a connection between the
theoretical and practical aspects of computer
architecture/organization courses at undergraduate and
graduate levels, many software tools have been used in
the past. If a large design-space needs to be explored
using detailed simulations of a few industry-standard
benchmark programs, the computational and time
resources can become an impediment, thus placing a
practical limit on the number of experiments, a student
can complete in one semester. In this paper, we propose
a software tool for predicting processor system
performance. The tool can be used for teaching how the
hardware configurations (processor microarchitecture,
memory hierarchy, etc.) and/or software (benchmark
program) characteristics affect the system throughput
(as represented by instructions completed per cycle). Use
of the proposed tool in computer architecture classes has
demonstrated its effectiveness in improving the students'
understanding of the related topics.

Index Terms – Computer architecture, Simulation tools,
Neural method, Performance prediction model, Web-based
education.

INTRODUCTION

Computer architecture and organization are considered ones
of the most difficult courses both to teach and to learn. It is
usually a challenge to teach a subject in an environment
where the covered topics are advancing very rapidly. In such
conditions, the instructors must be up to date with the state
of the art. At the same time, they should continuously revise
their lectures, tutorials, problem sets, lab exercises, and
exams to match the new development in the covered topics.
For example, today’s optical storage material should be
revised to cover the newly released HD DVD and Blu-Ray
technologies in addition to the widely-used CD and DVD
technologies. Additionally, the lab component in computer
architecture courses requires the design and execution of
both hardware and software experiments. This component
should be designed with extra care to make a clear link
between the theory and the practical labs.

Learning computer architecture is also challenging
because of its high degree of complexity. It requires the
understanding of several interrelated subjects that include
system design, electronic circuits, digital logic, assembly-
language programming, as well as application level
programming, discrete math and performance analysis.

In order to fill the gap between the theoretical and
practical aspects of computer architecture/organization
courses at undergraduate and graduate levels, many software
tools have been created and used in the past. These tools
vary in how they handle digital system simulation. They
usually offer means for adding/removing hardware
components, viewing simulation results, and conducting
statistical analysis of system performance. The nature of
these tools varies widely in several dimensions [1]− [3] that
include: simulation level (cycle-accurate, overall behavior),
level of detail (functional blocks, RTL), scope (processor
only, system level), as well as user-interface (graphical or
command-line). Examples of some basic simulators are:
Babbage's analytical engine, CASLE, CPU-SIM, EasyCPU,
Little Man Computer, etc. The medium-complexity
simulators include: SPIM, MIPSpim, THRSim11, etc. and
some advanced simulators are: DLXSim, RSIM, OSim,
SimpleScalar, etc.

If a large design-space needs to be explored using
detailed simulations of a few industry-standard benchmark
programs, the computational and time resources can place a
practical hurdle on the number of experiments a student can
complete in one semester. Consider the situation when the
students are asked to study the effect of changing several
parameters (e.g., number of integer multipliers, number of
float point multipliers, fetch queue width, etc.) on the
computer system performance. To achieve that, the students
have to run several sets of simulations. In each set, they
should change only a single parameter and measure the
system performance while a benchmark program is
executed. It is obvious that running these experiments using
a detailed simulation-based tool (e.g., cycle-accurate
simulator) will consume a large amount of computational
and time resources.

In this paper, we propose a software tool, named
PerfPred, for predicting processor system performance; the
tool can be used for teaching how the hardware
configurations (processor microarchitecture, memory
hierarchy, etc.) and/or software (benchmark program)
characteristics affect the system throughput. Examples of
hardware parameters are: issue-width, ALU count, cache
size, cache configuration, branch prediction scheme, etc.
The software parameters are determined by the benchmark
program selected for execution. PerfPred provides the
output in terms of instructions per cycle (IPC) which is a
widely-used metric for a processor system throughput. The
core of PerfPred is a machine-learnt model (based on neural
network (NN) methodology) that speeds the task of system
performance prediction to less than a second; this is several

ACCEPTED: A. Beg and W. Ibrahim, "An Online Tool for Teaching Design Trade-offs in Computer Architecture,"
in International Conference on Engineering Education (ICEE 2007), Coimbra, Portugal, 2007.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

orders of magnitude faster than detailed simulation-based
methods [4]. PrefPred has a user-friendly web-based
interface, which removes the need for program installation
on individual machines.

NN’s ability to model the behavior of non-linear and
high-dimensional systems has been used extensively in the
past. NNs comprise of simple processing entities called
neurons which emulate the characteristics of biological
neurons (Figure 1). Interconnections of neurons parallelize
the operations that are usually performed sequentially by the
traditional computers. NN-model creation (training)
involves repeated presentation of known input-output sets
(training examples) to the network. With each cycle of
training (epoch), NN’s internal structure (specifically, the
neuron weights) is adjusted in an attempt to bring the NN-
output(s) closer to those of the training examples [5].

In the next section of this paper, we review the previous
work related to teaching of computer architecture. Then we
describe how a NN is used to build the nucleus of PerfPred.
The user interface is also discussed, followed by two use
cases of PerfPred. The last section of this paper presents the
conclusions as well as future extensions to the current work.

PREVIOUS WORK

Due to the complexity of the computer architecture and
organization courses, a variety of educational tools have
been developed and used by several education institutions
worldwide to ease this complexity and improve the quality
of the teaching process. These tools differ greatly in their
complexity, simulation level, and user interface. Early tools
were mainly text-based, while most of the current ones have
graphical interfaces that allow them to provide visual
representation to the internal operation of a computer
system. To help instructors select the right tool for teaching
a specific computer architecture topic, an orientation to the
current state-of-the-art in computer architecture education
resources is provided in [6]. The orientation illustrates five
major websites dedicated for computer architecture
educational resources. Throughout the orientation, the
authors attempt to identify the gaps between the current
resources available on the Web and the resources needed by
the instructors and try to find why this gap exists.

Previous work in computer architecture tools can be
divided into three main categories [7]. The first category

includes simple tools that are mainly used in the
introductory undergraduate courses. The second category
includes more advanced tools that are largely used in
advanced microarchitecture courses. These tools focus more
on sophisticated parallel architectures with multiple CPUs.
Finally, the third category comprises the tools dedicated to
memory subsystem category which focus on the interactions
among the CPU, main memory, and cache memory.

Some of the tools in the first category, such as the Little
Man Computer [8], use only simple addressing modes,
limited instruction sets, and very simple memory models.
While, other tools (belonging to the third category) such as
LC2 [9], SPIM [10], and SPIMSAL [11] tend to include
more realistic set of addressing modes, more complete
instruction sets, more realistic memory hierarchies, and
sometimes an interrupt mechanism.

The third category (more advanced tools) includes
SimpleScalar [12], DLX, MipSim [13] and Mic-1 [14].
These tools are designed to allow the observation of
machine language execution at the microcode level (e.g.,
data paths, control units). Advanced tools can be used to
investigate the advantages and disadvantages (e.g.,
efficiency, complexity) of performance enhancing
techniques such as pipelining, branch prediction and
instruction-level parallelism. Some of these simulators are
microprogrammable, allowing students to experiment with
the design of instruction sets. The third category also
includes tools for simulating multiprocessor architecture.
These tools (e.g., GEMS [15], RSIM [16], WWT2 [17])
allow students to study the effect of different design
parameters (e.g., memory sharing and locking schemes,
instruction level parallelism, etc.) on the performance of
complicated, multithreaded workloads such as databases and
web servers.

The effect of the memory hierarchy (cache, main, and
virtual) on the performance of computer systems is a
mandatory topic in any undergraduate computer
architecture/organization course. Therefore, researchers
have paid great attention to the development of realistic
memory simulation tools. Some of the well known tools
include Dinero IV [18], VirtualMemory [19] and SPMCache
 [20]. Dinero IV is a cache simulator that supports various
types of caches, i.e., direct mapped, set associative and fully
associative. Block sizes, associativity and other parameters
may also be specified. The tool can also be used to simulate
multiple levels of cache as well as for classifying the type of
misses (compulsory, conflict and capacity).

SMPCache is a trace-driven simulator for analysis and
teaching of cache memory systems on symmetric
multiprocessors. It has a graphic user-interface that allows
the students to experiment different theoretical aspects of
cache memories and multiprocessors. Some of the
parameters that the students can study are: program locality;
influence of number of processors, cache coherence
protocols, schemes for bus arbitration, mapping,
replacement policies, cache size (blocks in cache), number
of cache sets (for set-associative caches), number of words
by block (memory block size), and the word size. However,
a disadvantage of SMPCache is its slow simulation speed.
VirtualMemory presents a graphical interface allowing the

FIGURE 1
A SIMPLE NEURAL NETWORK CONTAINING THREE LAYERS: INPUT, HIDDEN,

AND OUTPUT.

ACCEPTED: A. Beg and W. Ibrahim, "An Online Tool for Teaching Design Trade-offs in Computer Architecture,"
in International Conference on Engineering Education (ICEE 2007), Coimbra, Portugal, 2007.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

simulation of virtual memory (main memory, hard disk and
page table) and exhibits statistical data during the
simulation.

NN-BASED PERFPRED TOOL DEVELOPMENT

The NN-based PerfPred proposed in this paper includes
different microarchitectural (hardware) parameters to predict
the processor system performance which is measured in
instructions completed per cycle (IPC). Each hardware
parameter is represented by a single neuron in the input
layer. In addition, six neurons represent six different
SPEC2000 CPU integer benchmarks (i.e., bzip2, crafty, eon,
mcf, twolf, and vortex) [21]. There is a single hidden layer in
the model. One hidden layer is considered sufficient to
represent most non-linear systems [5]. The model output
(IPC) is produced by single output neuron. The general
hierarchy of this model resembles the NN shown in Figure
1. Numerous experiments were carried out to determine a
suitable count of neurons in the hidden layer of the NN
(Details of these experiments are discussed shortly).

The NN presented here models a superscalar processor
system, which in turn is based on SimpleScalar’s sim-
outorder architecture [12]. Table 1 lists different
configurations of sim-outorder which were used to run more
than 6000 simulations. The time for a single simulation on
an x86-based Linux machine ranged from 0.5 to 2 hours. Six
SPEC2000 CPU integer benchmarks with their respective
‘test’ inputs were used in these simulations. The simulations
were fast-forwarded by 100 million instructions while the
maximum number of instructions was limited to 500 million
 [12], [21].

The data acquired from sim-outorder simulations
needed to be re-scaled and transformed. As widely known,
this step is required to make sure that all of NN inputs
equitably influence the training process. As an example, the
log2 transformation was used for the values: {2, 4, 8, 16, 32,
64, and 128}. After transformation, the input values were
scaled to the range [0, 1].

The neural or analytical models can be several orders
of magnitude faster than simulation models but a price may
have to be paid in terms of accuracy. 20-39% error ranges
were reported in many research works [22]- [26]. For the
NN models, we opted for 15% error allowance for training
and validating. Validation was done with the input-output
examples (10% of total dataset); the later were not shown to
the NN during training.

Brain-Maker (version 3.75), an MS-Windows based
software package [27] was used to create the NN models.
This package uses feed-forward and back-propagation
methodology of neural modeling.

In our NN models, numbers of input and output neurons
were fixed. However, in an effort to find an optimum-sized
NN model, hidden layer sizes from 2 to 30 were
experimented with. As expected, the more the number of
hidden neurons, the more the model’s training iteration
count. Each NN-configuration was trained many times with
randomly-set neuron weights at the training onset, to reduce
the chances of running into local minima. As mentioned
earlier, 90% of the complete data set was used for training
purposes, while the other 10% was used for test/validate the
NNs’ predictive abilities.

The NN model training and validation statistics are
graphically shown in Figure 2. We notice that with a count
of just 8 neurons in the hidden layer, training accuracy
(defined by the number of training sets predicted within the
desired error allowance) of nearly 85% was attained. With 8
or more neurons in the hidden layer, the validation accuracy
(defined by the number of validation sets predicted within
the desired error allowance) remained quite close to the
training accuracy, thus demonstrating the model’s learning
effectiveness. Further more, increasing the hidden layer size
beyond 8 neurons did not lead to any significant
improvement in prediction accuracy.

TABLE 1
PARAMETERS USED FOR SIM-OUTORDER SIMULATIONS AND FOR

SUBSEQUENT PERFPRED MODEL CREATION AND TESTING
Parameter
Type

Input Neuron Description Range

Hardware Load/store queue (instructions) 2, 4, 8, 16, 32, 64, 128
Hardware Fetch queue width

(instructions)
2, 4, 8, 16, 32, 64, 128

Hardware Decode width
(instructions)

1, 2, 4, 8, 16, 32, 64

Hardware Issue width in a cycle 1, 2, 4, 8, 16, 32, 64
Hardware Commit width in a cycle 1, 2, 4, 8, 16, 32, 64
Hardware Register update unit (instructions) 2, 4, 8, 16, 32, 64, 128
Hardware Ratio of CPU and bus speeds 2, 4, 8, 16, 32, 64, 128
Hardware Integer ALUs 1, 2, 3, 4, 5, 6, 7, 8
Hardware Integer multipliers 1, 2, 3, 4, 5, 6, 7, 8
Hardware Branch prediction scheme Taken, Not-taken,

Perfect (represented as
‘symbol’ in NN)

Hardware Branch misprediction penalty
(cycles)

1, 2, 3, 4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128

Software bzip2 (benchmark) 0, 1
Software crafty (benchmark) 0, 1
Software eon (benchmark) 0, 1
Software mcf (benchmark) 0, 1
Software twolf (benchmark) 0, 1
Software vortex (benchmark) 0, 1

20%

40%

60%

80%

100%

0 5 10 15 20 25 30
Size of hidden layer (neurons)

A
cc

ur
ac

y
(%

)

Training Validation

FIGURE 2

TRAINING AND VALIDATION ACCURACIES AS A FUNCTION OF THE SIZE OF
THE SINGLE HIDDEN LAYER IN THE NN MODEL. BRAIN MAKER

PARAMETERS: TRAINING/TESTING TOLERANCE = 0.15; LEARNING RATE
ADJUSTMENT TYPE = HEURISTIC; INITIAL NEURON WEIGHTS SET

RANDOMLY.

ACCEPTED: A. Beg and W. Ibrahim, "An Online Tool for Teaching Design Trade-offs in Computer Architecture,"
in International Conference on Engineering Education (ICEE 2007), Coimbra, Portugal, 2007.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Notice that all hardware (and software) parameters
(listed in Table 1) were used in building the currently
present NN models. We are extending the current research
to study the contribution of each input parameter to the
model. This investigation may lead to a fewer number of
neurons in the input and hidden layers.

PerfPred User Interface

A web-browser interface developed (in PHP) allows user to
easily select the input parameters (see Figure 3). The users
pick a given parameter using one of the ‘radio-buttons’ (near
the middle of the screen). The range for this parameter is
entered in two boxes (labeled ‘To’ and ‘From’) on the left of
the radio button. All other parameters take a single value
that is entered in the ‘From’ box. Once the input parameters
are selected, the ‘Plot’ or ‘Show values’ button is pressed.
Based on this selection, the predicted values are either
plotted or listed in a text box. The text box allows the user to
save the predicted values and export them into a different
program such as MS-Excel. Values from multiple runs can
be combined into a single plot; two such examples are
shown in the next section.

PERFPRED USE CASES

In this section, we present two examples of the insight a user
can gain by using PerfPred performance prediction tool. We
chose 3 benchmarks (bzip2, crafty, and eon) to study the
impact of varying the number of instructions issued per
cycle (issue width) on the processor throughput. We varied
the issue width from 2 to 64. For all benchmarks, we
observe the general trend that IPC increases as more
instructions are issued in a cycle (see Figure 4). However,
the incremental gains made due to added issue hardware
diminish when we go beyond 8 instructions. This limitation
may come from the limited parallelism inherent in the
programs themselves.

As a second example, Figure 5 shows the behavior of
the processor system in response to branch misprediction,
for 3 different benchmarks mcf, twolf and vortex. The
number of cycles taken after a mispredicted branch ranges

from 1 to 128. Expectedly, the longer it takes to recover
from a branch misprediction, the lower the throughput (IPC)
of the processor. The IPC curves for all the benchmarks are
similar in shape. We notice that vortex shows less sensitivity
to increased misprediction penalty than mcf and twolf.
Characterization of basic blocks of these programs can shed
more light on the reasons for the sensitivity.

Note that the above results could have been acquired by
running 21 actual simulations for the first use case and 42
simulations for the second use case; both of these would
have taken a day or more of computing time on one of
today’s PCs. In comparison, the same or more amount of
information can be acquired by running the PerfPred tool in
less than a second.

To test the effectiveness of PerfPred as a teaching tool,
we used it in one of the undergraduate level computer
architecture courses in the previous (Fall 2006) semester.
The student perception of the effect of changing different
microarchitectural features in a processor was evaluated
before and after the tool introduction. Subsequent testing
showed some improvement in understanding of the
concepts. Continued use of the tool in the current and future
semesters is expected to reinforce the tool’s usefulness.

FIGURE 3
WEB-BASED INTERFACE OF PERFPRED. IN THIS EXAMPLE, 'MISS PENALTY

OF BRANCH PREDICTOR' IS SELECTED TO STUDY ITS EFFECT ON THE SYSTEM
THROUGHPUT.

0.00

0.50

1.00

1.50

2.00

2.50

1 10 100
Issue width (instructions)

P
ro

ce
ss

or
 th

ro
ug

hp
ut

 (I
P

C
)

bzip2 crafty eon

FIGURE 4
SENSITIVITY OF PROCESSOR THROUGHPUT (IPC) TO ISSUE WIDTH WHILE

ALL OTHER PARAMETERS ARE FIXED. INITIALLY, ISSUING MORE
INSTRUCTIONS IN A CYCLE HELPS IMPROVES THE PROCESSOR

THROUGHPUT. HOWEVER, THIS INCREASE STOPS AS THE ISSUE WIDTH
EXCEEDS 8 INSTRUCTIONS.

0.00

0.30

0.60

0.90

1.20

1.50

0 30 60 90 120
Branch misprediction latency (cycles)

P
ro

ce
ss

or
 th

ro
ug

hp
ut

 (I
P

C
)

mcf twolf vortex

FIGURE 5
SENSITIVITY OF PROCESSOR THROUGHPUT TO ISSUE WIDTH WHILE ALL

OTHER PARAMETERS ARE FIXED. AS EXPECTED, THE PROCESSOR COMPLETES
FEWER INSTRUCTIONS PER CYCLE AS THE BRANCH MISPREDICTION LATENCY.

ACCEPTED: A. Beg and W. Ibrahim, "An Online Tool for Teaching Design Trade-offs in Computer Architecture,"
in International Conference on Engineering Education (ICEE 2007), Coimbra, Portugal, 2007.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

CONCLUSIONS

In this paper, we have presented an NN-based processor
tool/model for performance prediction; the tool was created
using the data acquired from a large number of simulations
covering a wide area of superscalar processor design space.
The resultant model provided fast and reasonably accurate
estimates of the throughput of the processor. Prediction
accuracies of 85% or better were observed, which are
comparable to related NN models previously reported. The
proposed performance prediction tool can be used for the
study of microarchitectural trade-offs in a processor system
design. The tool can also be used effectively in computer
science courses related to compiler optimization.

In pedagogical settings, the students gain the theoretical
knowledge of computer architecture/organization in the
lectures; subsequent laboratory assignments using PerfPred
reinforce their learning of factors affecting the computer
system performance. Use of tools similar to PrefPred (e.g.,
SPMCache) in computer architecture classes has
demonstrated its effectiveness in improving the students'
understanding of the related topics. It is expected that using
PrefPred will significantly help instructors close the gap
between the theoretical and practical aspects of computer
architecture/organization courses

Further enhancements to the proposed predictive model
are a subject of our ongoing research. The improvements
include: investigation of methods for improved prediction
accuracy; dimension reduction of the model; inclusion of a
program’s dynamic characteristics as input parameters, etc.

ACKNOWLEDGMENT

This work was financially supported by the Research
Affairs at the ABC University under a contract no. 02-02-9-
11/06. The authors would like to thank Mr. Jxyz Axyz for
setting up the simulation environment and for developing
PerfPred web interface.

REFERENCES

[1] J. Djordjevic, A. Milenkovic, and N. Grbanovic, “Flexible web-based
educational system for teaching computer architecture and
organization,” IEEE Trans. Educ., vol. 48, pp. 264–273, May 2005.

[2] E. Dirkx and J. Tiberghien, “An animated simulation environment for
microprocessors,” Microprocessing and Microprogramming, vol. 24,
pp. 149–152, sep. 1988.

[3] B. Lees, “An interactive modeling system to assist the teaching of
computer architecture,” Computers & Education, vol. 8, pp. 419–426,
1984.

[4] A. Beg and Y. Chu, “Modeling of trace- and block-based caches,” J.
Circuits, Syst. & Comput. (JCSC), vol. 16, 2007. In Press.

[5] T. Mitchell, “Machine learning,” McGraw-Hill Co., Columbus, OH,
USA, 1997.

[6] W. Yurcik and E. F. Gehringer, “A survey of web resources for
teaching computer architecture,” Proc. Workshop on Comput. Archit.
Educ. (WCAE), Anchorage, AK, USA, May 2002, pp. 126–131.

[7] G. S. Wolffe, W. Yurcik, H. Osborne, and M. A. Holliday, “Teaching
computer organization with limited resources using simulators,” Proc.
SIGCSE Technical Symp. on Comput. Sci. Educ., Covington, USA,
2002, pp.176-180.

[8] H. Osborne and W. Yurcik, “The educational range of visual
simulations of the little man computer architecture paradigm,” Proc.
32nd ASEE/IEEE Frontiers in Educ. Conf. (FIE), Boston, MA, USA,
Nov. 2002, pp. S4G-19–S4G-24.

[9] Y. Patt and S. Patel, “Introduction to computing systems,” McGraw-
Hill, 2001.

[10] D. Patterson and J. Hennessy, “Computer organization and design,”
2nd edition, Morgan Kaufmann, 1998.

[11] J. Goodman and K. Miller “A programmer’s view of computer
architecture,” Oxford U. Press, 1993.

[12] T. Austin, E. Larson and D. Ernst “SimpleScalar: an infrastructure for
computer system modeling,” Comput., vol. 35, pp. 59–67, Feb. 2002.

[13] H. Grunbacher and H. Khosravipour, “WinDLX and MIPSim
pipeline simulators for teaching computer architecture,” Proc. IEEE
Symp. and Workshop on Eng.of Comput. Based Syst., Friedrichshafen,
Germany, Mar. 1996, pp. 412–417.

[14] A. Tanenbaum, “Structured computer organization,” 4th edition,
Prentice Hall, 1999.

[15] M. M. K. Martian, et al, “Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset,” Comput. Archit. News
(CAN), vol. 33, pp. 92–99, Sept. 2005.

[16] C. J. Hughes , V. S. Pai , P. Ranganathan , and S. V. Adve, “RSIM:
Simulating Shared-Memory Multiprocessors with ILP processors,”
IEEE Comput., vol. 35, pp. 40–49, Feb. 2002.

[17] S. S. Mukherjee, et al. “Wisconsin wind tunnel II: A fast and portable
architecture simulator,” Workshop on Perf. Analysis and its Impact on
Design, June 1997.

[18] M. D. Hill. University of Wisconsin. Dinero IV. [Online]. Available:
http://www.cs.wisc.edu/~markhill/DineroIV/.

[19] N. Tran, and D. A. Menasce. George Mason University.
VirtualMemory. [Online]. Available:
http://cs.gmu.edu/cne/workbenches/vmsim/vm.html .

[20] M. A. Vega-Rodríguez, J. M. Sánchez-Pérez, and J. A. Gómez-
Pulido, “An educational tool for testing caches on symmetric
multiprocessors,” Microprocessors and Microsystems, vol. 25, pp.
187–194, June 2001.

[21] Standard Performance Evaluation Corporation. SPEC2000 CPU
benchmarks. [Online]. Available: http://www.spec.org/cpu2000/

[22] S. Wallace, and N. Bagherzadeh, “Modeled and measured instruction
fetching performance for superscalar microprocessors,” IEEE Trans.
Parallel Distrib. Syst., vol. 9, pp. 570–578, 1998.

[23] D. B. Noonburg, and J. P. Shen, “Theoretical modeling of superscalar
processor performance,” Proc. 27th Intl. Symp. Microarch., San Jose,
CA, USA, 1994, pp. 52–62.

[24] T. Wada, and S. Przybyski, “An analytical access time model for
on-chip cache memories,” IEEE J. Solid State Circ., vol. 27, pp.
1147–1156, 1992.

[25] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program analysis,” J. Instr. Level Parallelism
(JILP), pp. 1–28, vol. 7, Sep. 2005.

[26] A. Agarwal, M. Horowitz, J. Hennessy, “An analytical cache model,”
ACM Trans. Comput. Syst., vol. 7, pp. 184–215, 1989.

[27] “Brain-Maker User’s Guide and Reference Manual,” California
Scientific Press, Nevada City, CA, 1998.

ACCEPTED: A. Beg and W. Ibrahim, "An Online Tool for Teaching Design Trade-offs in Computer Architecture,"
in International Conference on Engineering Education (ICEE 2007), Coimbra, Portugal, 2007.

