
Predicting Processor Performance with a
Machine Learnt Model

Azam Beg
College of Information Technology

UAE University
Al-Ain, United Arab Emirates

abeg@uaeu.ac.ae

Abstract—Architectural simulators are traditionally used to
study the design trade-offs for processor systems. The
simulators are implemented in a high–level programming
language or a hardware descriptive language, and are used to
estimate the system performance prior to the hardware
implementation. The simulations, however, may need to run
for long periods of time for even a small set of design
variations. In this paper, we propose a machine learnt (neural
network/NN) model for estimating the execution performance
of a superscalar processor. Multiple runs for the model are
finished in less than a few milliseconds as compared to days or
weeks required for simulation-based methods. The model is
able to predict the execution throughput of a processor system
with over 85% accuracy when tested with six SPEC2000 CPU
integer benchmarks. The proposed model has possible
applications in computer architecture research and teaching.

I. INTRODUCTION & PREVIOUS WORK
Hardware development is traditionally expedited using

software models. The models are implemented in high level
or hardware description languages. Relevant benchmark
programs are then run on the models to get good
approximations of actual hardware. Cycle-accurate
simulators tend to be accurate but require weeks of
simulation time with programs that run for a few billion
cycles [1][2]. Noonburg and Shen [3] utilized the benchmark
(program) traces to create a model for superscalar instruction
level parallelism (ILP). They also made use of processor
configurations to characterize the hardware. They combined
the ILP and hardware parameters in their model. The
prediction error with their models was as high as 22% for a
few SPEC95 CPU benchmarks. Wallace and Bagherzadeh
[1], and Hossain et al [2] presented models for conventional
and trace cache behaviors, respectively. The analytical model
by Hossain et al, due to its limited scope (only the caches,
and not the full processor) had higher prediction accuracy, to
be specific 7%. A processor system model needs to be
inclusive of both the program and hardware behavior. The
program behavior can be static or dynamic. The latter
characterization can be done by capturing repeating patterns

in a program [1]-[3]. Different parts of a program can be
steady state or cyclical in nature [4]; this property of
programs was used by Hamerly et al's simulation tool [5]. To
speed up simulation, Wunderlich et al's approach statistically
characterized the full-length benchmarks into smaller
subsets. A recent processor model by Joseph et al [7] used
detailed simulations to collect performance measures and
then used radial basis functions to build a model as an
alternative to simulations. Their model provided cycles per
instruction (CPI) estimates with error ranges of 1.5%-12%
for one of the SPEC2000 CPU benchmarks [8], and 1.5%-
23% for another.

Artificial neural networks (NNs) are electronic
equivalents of biological brains. The building blocks of NNs
are simple processing entities called neurons. The neurons
are interconnected to generate outputs in a parallel manner
(as compared to the conventional sequential computers).
Figure 1 shows a simple feed-forward neural network
(FFNN) composed of three layers (input, hidden, and output)
of neurons. The output of each layer only feeds the next layer
and not any of the previous layers. Each neuron multiplies
the inputs values with their respective weights. These values
are then passed through an activation function (sigmoid, for
example) to produce the final neuron output. The neuron
weights are determined by the NN training process which
involves presenting the NN with some known input
examples (training sets). The weights are iteratively adjusted
in a way that each set of inputs produces output(s) close to
the example's pre-known output. An iteration of the weight-
adjustment process is known as an epoch. Some known
input-output sets (validation sets) are used for validating the
NN prediction accuracy. The validation sets are not 'shown'
to NN during the training process [9].

In this paper, we propose use of NNs for creating a
prediction model for superscalar processor performance; the
performance is measured in terms of instructions completed
per cycle (IPC). The 'hardware' inputs to the model include
key microarchitectural features such as fetch, decode, issue,
and commit widths; number of integer and floating point

ACCEPTED: A. Beg, "Predicting Processor Performance with a Machine Learnt Model,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 1098-1101.

ALUs; etc. The 'software' inputs can be representative of the
dynamic nature of the programs; we selected a single such
input, i.e., the average instructions per branch (easily
acquired by running a single simulation of the given
program). We utilized six different SPEC2000 CPU integer
benchmark programs to acquire the data required for creating
and validating the model.

II. NEURAL NETWORK DATA ACQUISITION
The NN model in our research emulates the behavior of a

superscalar processor, i.e., SimpleScalar's sim-outorder
architecture [10]. We used different configurations in sim-
outorder's 630 simulations (as listed in Table I) to collect the
IPC data. The simulations for 6 different SPEC2000 CPU
integer benchmarks (namely, bzip2, crafty, eon, mcf, twolf,
and vortex) used 'test' inputs [8]. We used simulator's fast-
forwarding feature to reduce the effect of program
initialization; first 10% of the program instructions were fast-
forwarded. Maximum number of simulation cycles was set at
500 million instructions to finish the simulations in a
reasonable amount of time [1][2].

We used a PERL script to create the command lines for
310 sim-outorder command lines. The script randomly
selected from the parameter values listed in Table I. A
sample command line for crafty benchmark is shown here:

sim-outorder -fastfwd 50000000 -max:inst
500000000 -cache:il1 il1:64:32:4:t
-cache:il2 il2:64:32:16:l -cache:dl1
dl1:4:8:4:f -cache:dl2 dl2:16:8:4:l
-cache:dl1lat 3 -cache:dl2lat 6
-cache:il1lat 2 -cache:il2lat 8 -tlb:itlb
itlb:256:16:2:t -tlb:dtlb none -tlb:lat 30
-mem:lat 16 2 -mem:width 16 -decode:width 4
-issue:width 8 -commit:width 4 -ruu:size 16
-lsq:size 8 -fetch:ifqsize 8 -fetch:speed 8
-fetch:mplat 6 -res:ialu 3 -res:imult 7
-res:fpalu 1 -res:fpmult 7 -bpred nottaken
crafty00.peak.ev6

The remaining (320) command lines varied a single
parameter over its entire range, for example, the following
two command lines for bzip benchmark use one and two
decoders, respectively. All other parameters were left as sim-
outorder defaults:

sim-outorder -fastfwd 50000000 -max:inst
500000000 -decode:width 1 bzip200.peak.ev6
input.random 2

sim-outorder -fastfwd 50000000 -max:inst
500000000 -decode:width 2 bzip200.peak.ev6
input.random 2

Sim-outorder simulation results were saved into text-
based log files and were later parsed using another PERL
script. The simulations were run on multiple x86-machines
running cygwin (a UNIX emulator) under Windows-XP.
Each of the 630 simulations lasted 2-2.5 hours.

III. NEURAL NETWORK STRUCTURE AND TRAINING
Each input or output of the NN model corresponds to a

single neuron. So IPC prediction needed only a single output
neuron. There were 12 inputs to the NN, meaning there were
12 neurons in the input layer, i.e., 11 neurons were for
hardware parameter representation, and one for software/
benchmark program. Each program was represented by its
dynamic property called average instructions per branch
(sim-outorder parameter sim_IPB); this parameter has been
used in the past to represent programs [1][2]. The non-
numerical value of 'branch prediction scheme' parameter was
input to the NN as a symbol.

It is well known that a NN with a single hidden layer is
able to model most non-linear systems, so we limited our
experiments to NNs that comprised only one hidden layer of
neurons.

Our experiments involved multiple NN configurations,
mainly affecting the number of neurons in the network's
hidden layer. As mentioned earlier, the number of inputs and
outputs were fixed, so the corresponding neuron counts did
not vary. We used MS-Windows-based Brain-Maker
(version 3.75) [11] tool to model our back-propagation
FFNNs. In Table I, we can notice the non-linearity of input
parameter values. This wide variation in the inputs can
adversely affect the learn-ability of a NN. So log2 transform
was applied to the non-linear parameters as a data pre-
processing measure [11].

NN training was performed with the training set that
comprised 90% of full data set. The other 10% data sets were
used for validation. In order to investigate a somewhat wider
range of NN topologies, the hidden layer size was varied
between 1-45 neurons. Each experiment was repeated
multiple times with random initial weights, in order to
alleviate the possibility of local minima.

Percentages of correctly learnt data sets (whose accuracy
fell within the desired ranges) are plotted in Figure 2. The
accuracies start from their low values of 45.8% and go
higher as neurons are added to the hidden layer. Maximum
validation accuracy of 84.7% was attained with a relatively
small hidden layer of only 7 neurons. For the same
configuration, the training accuracy was 86.6%. A plausible
reason for having such a small size of hidden layer produce
the highest validation accuracy is: in the current models, all
13 microarchitectural features are being used as inputs; it is

Figure 1. Structure of a simple feed-forward neural network that contains
three layers of neurons, viz, input layer, hidden layer and an output layer.

Output of one layer delivers an output only to the next layer and not to any
previous layer, thus the name feed-forward neural network

ACCEPTED: A. Beg, "Predicting Processor Performance with a Machine Learnt Model,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 1098-1101.

possible that not all of these inputs are contributing equitably
to the outputs. Our observation of the neuron-weight
matrices does not provide sufficient clues; some input-
significance analysis may provide more insight into this
phenomenon. Studying the degree of
significance/contribution of each of the inputs to the model is
a topic of our continued research.

TABLE I. HARDWARE (MICROARCHITECTURAL) PARAMETERS USED
TO RUN SIMULATIONS WHICH ARE IN TURN USED TO ACQUIRE THE DATA

FOR THE NN MODEL.

Description Range

Load/store queue (instrs.) 2, 4, 8, 16, 32, 64, 128

Fetch queue width (instrs.) 2, 4, 8, 16, 32, 64, 128

Decode width (instrs.) 1, 2, 4, 8, 16, 32, 64

Issue width in a cycle 1, 2, 4, 8, 16, 32, 64

Commit width in a cycle 1, 2, 4, 8, 16, 32, 64

Register update unit (instrs.) 2, 4, 8, 16, 32, 64, 128

Ratio of CPU and bus speeds 2, 4, 8, 16, 32, 64, 128

Integer ALUs 1, 2, 3, 4, 5, 6, 7, 8

Integer multipliers 1, 2, 3, 4, 5, 6, 7, 8

Branch prediction scheme Taken, Not-taken, Perfect
Branch misprediction penalty
(cycles)

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48,
64, 96, 128

IV. PERFORMANCE PREDICTION WITH THE NEURAL
NETWORK MODEL

The proposed NN model can be employed to investigate
how different design parameters, for example, issue width,
instruction decoder count, number of integer ALUs, etc.,
influence the processor performance. First, we present the
example of varying branch misprediction penalty (i.e., the
number of cycles wasted due to a mispredicted branch).
Figure 3 shows the behavior of a processor in response to
branch penalty, for 4 different benchmarks. The penalty
ranges from 1 to 128. As expected, the longer it takes to

recover from a branch misprediction, the lower the
throughput (IPC) of the processor. We notice that the IPC
curves for all the benchmarks are similar in shape. However,
the dynamic nature of a program has a considerable effect on
IPC's absolute values. bzip2 exhibits a larger IPC over the
complete range of branch penalties than the other 3
benchmarks (crafty, eon, and mcf). A detailed look into the
benchmark characteristics may be needed to explain this
difference in program-dependent performance metrics.

In Figure 4, we show the effect of varying issue width,
i.e., the number of instructions issued per cycle. The issue
width in this example varies from 1 to 32 for three different
benchmarks, namely, bzip, crafty and eon. We notice that the
overall processor throughput increases with larger issue
width but flattens out around 8 decoders. This upper limit on
decoder hardware can be attributed to the limited parallelism
in the programs.

The point worth noting here is the speed with which the
processor performance can be estimated by using our NN
model. The two examples (presented above), if ran on a
traditional cycle-accurate simulator would have required a
few computer-days. Whereas, the NN model produces the
same results in less than a few milliseconds. Our model’s
speed efficiency can be helpful for researchers or students
alike. If used in academic environment, the models, in a very
short span of time, would allow students to study a much

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50
Neurons in hidden layer

Ac
cu

ra
cy

 (%
 o

f d
at

a
se

ts
)

Training
Validation

Figure 2. Training and validation accuracy (% of facts learnt correctly) as
a function of hidden layer neuron count. (Brain-Maker training parameters:
Training/testing tolerance = 0.15; learning rate adjustment type = heuristic.
Initial neuron weights set randomly). Note that the final neuron weights
and consequently the NN’s post-training predictions, are dependent on the
initial values selected by Brain-Maker (randomly).

0.0

0.5

1.0

1.5

2.0

2.5

0 32 64 96 128
Branch misprediction penalty (cycles)

IP
C

bzip2

mcf

crafty
eon

Figure 3. Sensitivity of IPC due to branch misprediction penalty. The
more the cycles spent after a misprediction, the lower the processor
throughput (IPC).

0

0.5

1

1.5

2

2.5

0 10 20 30 40
Issue width (instructions)

IP
C

bzip2

crafty

eon

Figure 4. Sensitivity of IPC due to issue width. Issuing more than 8
instruction 8 in every cycle does not result in furthering the processor
throughput (IPC).

ACCEPTED: A. Beg, "Predicting Processor Performance with a Machine Learnt Model,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 1098-1101.

wider range of processor system design space than if they
were to use a detailed simulator.

V. CONCLUSIONS
Using the NN model proposed in this research, one can

estimate the performance of a processor without requiring
lengthy simulations. For prediction purposes, the model
incorporates both the microarchitectural features of a
processor and the program characteristics. The model can
quickly estimate a processor system configuration to match
the desired performance. This step can be followed by
detailed cycle-accurate simulations. The model can also find
application in the teaching of computer architecture courses.
As a continuation of the current research, we are looking
into: (1) the selection criteria for microarchitectural
parameters based on their significance to the NN model, and
(2) extending the choice of software parameters that would
characterize the dynamic nature of the programs more
accurately.

REFERENCES
[1] S. Wallace and N. Bagherzadeh, "Modeled and Measured Instruction

Fetching Performance for Superscalar Microprocessors," IEEE Trans.
on Parallel and Distrib. Syst., Vol. 9, No. 6, Jun. 1998, pp. 570-578.

[2] A. Hossain, D. J. Pease, J. S. Burns, and N. Parveen, "A
Mathematical Model of Trace Cache," Proc. IEEE Inter. Conf. Appl.
Specific Syst., Archit. (ASAP’02), San Jose, CA, USA, Jul. 2002.

[3] D. B. Noonburg and J. P. Shen, "Theoretical Modeling of Superscalar
Processor Performance," Proc. Annual Inter. Symp. on Microarch.
(MICRO-27), San Jose, CA, USA, Nov. 1994.

[4] S. Dhodapkar and J. E. Smith, “Comparing Program Phase Detection
Techniques,” In Proceedings of Int’l Symposium on Micro-
architecture (MICRO-36), San Diego, CA, USA, Dec. 2003.

[5] G. Hamerly, E. Perelman, J. Lau, B. Calder, “Simpoint 3.0: Faster
and More Flexible Program Analysis,” Journal of Instruction Level
Parallelism (JILP), (website)
http://www.cse.ucsd.edu/~calder/papers/JILP-05-SimPoint3.pdf,
2005.

[6] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, J. C. Hoe, “SMARTS:
Accelerating Micro-architecture Simulation via Rigorous Statistical
Sampling," Proc. of Inter. Symp. Comp. Arch. (ISCA 2003), San
Francisco, CA, USA, Jun. 2003.

[7] P. J. Joseph, K. Vaswani, M. J. Thazhuthaveetil, "A Predictive
Performance Model for Superscalar Processors," Proc. Annual
IEEE/ACM Inter. Symp. on Microarch. (MICRO'06), Orlando, FL,
USA, Dec. 2006.

[8] SPEC2000 CPU benchmarks, (website)
http://www.spec.org/cpu2000/.

[9] T. Mitchell, Machine Learning, McGraw Hill Co., Columbus, OH,
USA, 1997.

[10] SimpleScalar 3.0d (simulation tool), (website)
http://www.simplescalar.com.

[11] Brain-Maker User’s Guide and Reference Manual, 7th ed. California
Scientific Software Press, 1998.

ACCEPTED: A. Beg, "Predicting Processor Performance with a Machine Learnt Model,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 1098-1101.

