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Abstract—Architectural simulators are traditionally used to 
study the design trade-offs for processor systems. The 
simulators are implemented in a high–level programming 
language or a hardware descriptive language, and are used to 
estimate the system performance prior to the hardware 
implementation. The simulations, however, may need to run 
for long periods of time for even a small set of design 
variations. In this paper, we propose a machine learnt (neural 
network/NN) model for estimating the execution performance 
of a superscalar processor. Multiple runs for the model are 
finished in less than a few milliseconds as compared to days or 
weeks required for simulation-based methods. The model is 
able to predict the execution throughput of a processor system 
with over 85% accuracy when tested with six SPEC2000 CPU 
integer benchmarks. The proposed model has possible 
applications in computer architecture research and teaching. 

I. INTRODUCTION & PREVIOUS WORK 
Hardware development is traditionally expedited using 

software models. The models are implemented in high level 
or hardware description languages. Relevant benchmark 
programs are then run on the models to get good 
approximations of actual hardware. Cycle-accurate 
simulators tend to be accurate but require weeks of 
simulation time with programs that run for a few billion 
cycles [1][2]. Noonburg and Shen [3] utilized the benchmark 
(program) traces to create a model for superscalar instruction 
level parallelism (ILP). They also made use of processor 
configurations to characterize the hardware. They combined 
the ILP and hardware parameters in their model. The 
prediction error with their models was as high as 22% for a 
few SPEC95 CPU benchmarks. Wallace and Bagherzadeh 
[1], and Hossain et al [2] presented models for conventional 
and trace cache behaviors, respectively. The analytical model 
by Hossain et al, due to its limited scope (only the caches, 
and not the full processor) had higher prediction accuracy, to 
be specific 7%. A processor system model needs to be 
inclusive of both the program and hardware behavior. The 
program behavior can be static or dynamic. The latter 
characterization can be done by capturing repeating patterns 

in a program [1]-[3]. Different parts of a program can be 
steady state or cyclical in nature [4]; this property of 
programs was used by Hamerly et al's simulation tool [5]. To 
speed up simulation, Wunderlich et al's approach statistically 
characterized the full-length benchmarks into smaller 
subsets. A recent processor model by Joseph et al [7] used 
detailed simulations to collect performance measures and 
then used radial basis functions to build a model as an 
alternative to simulations. Their model provided cycles per 
instruction (CPI) estimates with error ranges of 1.5%-12% 
for one of the SPEC2000 CPU benchmarks [8], and 1.5%-
23% for another.  

Artificial neural networks (NNs) are electronic 
equivalents of biological brains. The building blocks of NNs 
are simple processing entities called neurons. The neurons 
are interconnected to generate outputs in a parallel manner 
(as compared to the conventional sequential computers). 
Figure 1 shows a simple feed-forward neural network 
(FFNN) composed of three layers (input, hidden, and output) 
of neurons. The output of each layer only feeds the next layer 
and not any of the previous layers. Each neuron multiplies 
the inputs values with their respective weights. These values 
are then passed through an activation function (sigmoid, for 
example) to produce the final neuron output. The neuron 
weights are determined by the NN training process which 
involves presenting the NN with some known input 
examples (training sets). The weights are iteratively adjusted 
in a way that each set of inputs produces output(s) close to 
the example's pre-known output. An iteration of the weight-
adjustment process is known as an epoch. Some known 
input-output sets (validation sets) are used for validating the 
NN prediction accuracy. The validation sets are not 'shown' 
to NN during the training process  [9]. 

In this paper, we propose use of NNs for creating a 
prediction model for superscalar processor performance; the 
performance is measured in terms of instructions completed 
per cycle (IPC). The 'hardware' inputs to the model include 
key microarchitectural features such as fetch, decode, issue, 
and commit widths; number of integer and floating point 
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ALUs; etc. The 'software' inputs can be representative of the 
dynamic nature of the programs; we selected a single such 
input, i.e., the average instructions per branch (easily 
acquired by running a single simulation of the given 
program). We utilized six different SPEC2000 CPU integer 
benchmark programs to acquire the data required for creating 
and validating the model.  

II. NEURAL NETWORK DATA ACQUISITION 
The NN model in our research emulates the behavior of a 

superscalar processor, i.e., SimpleScalar's sim-outorder 
architecture [10]. We used different configurations in sim-
outorder's 630 simulations (as listed in Table I) to collect the 
IPC data. The simulations for 6 different SPEC2000 CPU 
integer benchmarks (namely, bzip2, crafty, eon, mcf, twolf, 
and vortex) used 'test' inputs [8]. We used simulator's fast-
forwarding feature to reduce the effect of program 
initialization; first 10% of the program instructions were fast-
forwarded. Maximum number of simulation cycles was set at 
500 million instructions to finish the simulations in a 
reasonable amount of time [1][2].  

We used a PERL script to create the command lines for 
310 sim-outorder command lines. The script randomly 
selected from the parameter values listed in Table I. A 
sample command line for crafty benchmark is shown here:   

sim-outorder -fastfwd 50000000 -max:inst 
500000000 -cache:il1 il1:64:32:4:t  
-cache:il2 il2:64:32:16:l -cache:dl1 
dl1:4:8:4:f -cache:dl2 dl2:16:8:4:l  
-cache:dl1lat 3 -cache:dl2lat 6  
-cache:il1lat 2 -cache:il2lat 8 -tlb:itlb 
itlb:256:16:2:t -tlb:dtlb none -tlb:lat 30 
-mem:lat 16 2 -mem:width 16 -decode:width 4 
-issue:width 8 -commit:width 4 -ruu:size 16 
-lsq:size 8 -fetch:ifqsize 8 -fetch:speed 8 
-fetch:mplat 6 -res:ialu 3 -res:imult 7  
-res:fpalu 1 -res:fpmult 7 -bpred nottaken 
crafty00.peak.ev6 

The remaining (320) command lines varied a single 
parameter over its entire range, for example, the following 
two command lines for bzip benchmark use one and two 
decoders, respectively. All other parameters were left as sim-
outorder defaults:  

sim-outorder -fastfwd 50000000 -max:inst 
500000000 -decode:width 1 bzip200.peak.ev6 
input.random 2 

sim-outorder -fastfwd 50000000 -max:inst 
500000000 -decode:width 2 bzip200.peak.ev6 
input.random 2 

Sim-outorder simulation results were saved into text-
based log files and were later parsed using another PERL 
script. The simulations were run on multiple x86-machines 
running cygwin (a UNIX emulator) under Windows-XP. 
Each of the 630 simulations lasted 2-2.5 hours.   

III. NEURAL NETWORK STRUCTURE AND TRAINING 
Each input or output of the NN model corresponds to a 

single neuron. So IPC prediction needed only a single output 
neuron. There were 12 inputs to the NN, meaning there were 
12 neurons in the input layer, i.e., 11 neurons were for 
hardware parameter representation, and one for software/ 
benchmark program. Each program was represented by its 
dynamic property called average instructions per branch 
(sim-outorder parameter sim_IPB); this parameter has been 
used in the past to represent programs [1][2]. The non-
numerical value of 'branch prediction scheme' parameter was 
input to the NN as a symbol.  

It is well known that a NN with a single hidden layer is 
able to model most non-linear systems, so we limited our 
experiments to NNs that comprised only one hidden layer of 
neurons. 

Our experiments involved multiple NN configurations, 
mainly affecting the number of neurons in the network's 
hidden layer. As mentioned earlier, the number of inputs and 
outputs were fixed, so the corresponding neuron counts did 
not vary. We used MS-Windows-based Brain-Maker 
(version 3.75) [11] tool to model our back-propagation 
FFNNs. In Table I, we can notice the non-linearity of input 
parameter values. This wide variation in the inputs can 
adversely affect the learn-ability of a NN. So log2 transform 
was applied to the non-linear parameters as a data pre-
processing measure [11].  

NN training was performed with the training set that 
comprised 90% of full data set. The other 10% data sets were 
used for validation. In order to investigate a somewhat wider 
range of NN topologies, the hidden layer size was varied 
between 1-45 neurons. Each experiment was repeated 
multiple times with random initial weights, in order to 
alleviate the possibility of local minima.  

Percentages of correctly learnt data sets (whose accuracy 
fell within the desired ranges) are plotted in Figure 2. The 
accuracies start from their low values of 45.8% and go 
higher as neurons are added to the hidden layer. Maximum 
validation accuracy of 84.7% was attained with a relatively 
small hidden layer of only 7 neurons. For the same 
configuration, the training accuracy was 86.6%. A plausible 
reason for having such a small size of hidden layer produce 
the highest validation accuracy is: in the current models, all 
13 microarchitectural features are being used as inputs; it is 

 

Figure 1.  Structure of a simple feed-forward neural network that contains 
three layers of neurons, viz, input layer, hidden layer and an output layer. 

Output of one layer delivers an output only to the next layer and not to any 
previous layer, thus the name feed-forward neural network 
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possible that not all of these inputs are contributing equitably 
to the outputs. Our observation of the neuron-weight 
matrices does not provide sufficient clues; some input-
significance analysis may provide more insight into this 
phenomenon. Studying the degree of 
significance/contribution of each of the inputs to the model is 
a topic of our continued research. 

TABLE I.  HARDWARE (MICROARCHITECTURAL) PARAMETERS USED 
TO RUN SIMULATIONS WHICH ARE IN TURN USED TO ACQUIRE THE DATA 

FOR THE NN MODEL. 

Description Range 

Load/store queue (instrs.) 2, 4, 8, 16, 32, 64, 128 

Fetch queue width (instrs.) 2, 4, 8, 16, 32, 64, 128 

Decode width (instrs.) 1, 2, 4, 8, 16, 32, 64 

Issue width in a cycle  1, 2, 4, 8, 16, 32, 64 

Commit width in a cycle  1, 2, 4, 8, 16, 32, 64 

Register update unit (instrs.) 2, 4, 8, 16, 32, 64, 128 

Ratio of CPU and bus speeds 2, 4, 8, 16, 32, 64, 128 

Integer ALUs 1, 2, 3, 4, 5, 6, 7, 8 

Integer multipliers 1, 2, 3, 4, 5, 6, 7, 8 

Branch prediction scheme  Taken, Not-taken, Perfect 
Branch misprediction penalty 
(cycles) 

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 
64, 96, 128 

IV. PERFORMANCE PREDICTION WITH THE NEURAL 
NETWORK MODEL 

The proposed NN model can be employed to investigate 
how different design parameters, for example, issue width, 
instruction decoder count, number of integer ALUs, etc., 
influence the processor performance. First, we present the 
example of varying branch misprediction penalty (i.e., the 
number of cycles wasted due to a mispredicted branch). 
Figure 3 shows the behavior of a processor in response to 
branch penalty, for 4 different benchmarks. The penalty 
ranges from 1 to 128. As expected, the longer it takes to 

recover from a branch misprediction, the lower the 
throughput (IPC) of the processor. We notice that the IPC 
curves for all the benchmarks are similar in shape. However, 
the dynamic nature of a program has a considerable effect on 
IPC's absolute values. bzip2 exhibits a larger IPC over the 
complete range of branch penalties than the other 3 
benchmarks (crafty, eon, and mcf). A detailed look into the 
benchmark characteristics may be needed to explain this 
difference in program-dependent performance metrics. 

In Figure 4, we show the effect of varying issue width, 
i.e., the number of instructions issued per cycle. The issue 
width in this example varies from 1 to 32 for three different 
benchmarks, namely, bzip, crafty and eon. We notice that the 
overall processor throughput increases with larger issue 
width but flattens out around 8 decoders. This upper limit on 
decoder hardware can be attributed to the limited parallelism 
in the programs.  

The point worth noting here is the speed with which the 
processor performance can be estimated by using our NN 
model. The two examples (presented above), if ran on a 
traditional cycle-accurate simulator would have required a 
few computer-days. Whereas, the NN model produces the 
same results in less than a few milliseconds. Our model’s 
speed efficiency can be helpful for researchers or students 
alike. If used in academic environment, the models, in a very 
short span of time, would allow students to study a much 

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50
Neurons in hidden layer

Ac
cu

ra
cy

 (%
 o

f d
at

a 
se

ts
)

Training
Validation

 

Figure 2.  Training and validation accuracy (% of facts learnt correctly) as 
a function of hidden layer neuron count. (Brain-Maker training parameters: 
Training/testing tolerance = 0.15; learning rate adjustment type = heuristic. 
Initial neuron weights set randomly). Note that the final neuron weights 
and consequently the NN’s post-training predictions, are dependent on the 
initial values selected by Brain-Maker (randomly).  
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Figure 3.   Sensitivity of IPC due to branch misprediction penalty. The 
more the cycles spent after a misprediction, the lower the processor 
throughput (IPC).   
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Figure 4.   Sensitivity of IPC due to issue width. Issuing more than 8 
instruction 8 in every cycle does not result in furthering the processor 
throughput (IPC). 
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wider range of processor system design space than if they 
were to use a detailed simulator.  

V. CONCLUSIONS 
Using the NN model proposed in this research, one can 

estimate the performance of a processor without requiring 
lengthy simulations. For prediction purposes, the model 
incorporates both the microarchitectural features of a 
processor and the program characteristics. The model can 
quickly estimate a processor system configuration to match 
the desired performance. This step can be followed by 
detailed cycle-accurate simulations. The model can also find 
application in the teaching of computer architecture courses. 
As a continuation of the current research, we are looking 
into: (1) the selection criteria for microarchitectural 
parameters based on their significance to the NN model, and 
(2) extending the choice of software parameters that would 
characterize the dynamic nature of the programs more 
accurately. 
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