
A Methodology for Evaluation Time Approximation

Prasad P. W. C.
College of Information Technology
United Arab Emirates University

Al-Ain, UAE
prasadc@uaeu.ac.ae

Azam Beg
College of Information Technology
United Arab Emirates University

Al-Ain, UAE
abeg@uaeu.ac.ae

Abstract—This paper describes a feed-forward neural network
model (FFNNM) for complexity prediction of path related
objective functions, mainly average path length (APL) of an
arbitrary Boolean function (BF). The proposed model is
determined by neural training process of evaluation time
derived from the Monte Carlo data of randomly generated
BFs. Experimental results show a good correlation between the
ISCAS benchmark circuits and those predicted by the
FFNNM. This model is capable of providing an estimation of
the performance of a circuit prior to its final implementation.

I. INTRODUCTION
One of the most important functions of CAD tools is to
provide robust and efficient data structures to represent BFs
as well as fast algorithms to manipulate these data structures
[1], [2]. BDD was introduced by Akers [3] in 1978 as a data
structure for efficient representation and manipulation of
BFs. Over the years, the number of nodes in a BDD became
a major concern since it is proportional to the complexity of
the Boolean circuits [4]. However, the number of nodes is
not directly related to the evaluation time for a BF. Rather
the evaluation time is directly related to the total expected
path length of a BDD [5]-[7]. The minimization of average
evaluation time is very useful, in embedded system using
real-time operating system (RTOS). Building an actual
BDD model needs time for implementation, verification and
testing [8]. So it will be useful to have an estimation of the
BDD complexity prior to making decisions on the feasibility
of the design. There have been a lot of research works done
on the estimation of combinational and sequential circuit
parameters from the exact BF describing the circuit in which
BF plays a major role [9]-[11]. In this paper, we focus on
the APL of a BDD, which is the sum of the path lengths
over all assignments of values to the variables divided by
the number of assignments.
Neural networks (NNs) have proven their usefulness in the
area of pattern recognition, prediction applications and for
their computational properties [12], [13]. The measure of
efficiency of the circuits has been addressed in relation with

the area of circuit implementation, where the complexity of
BFs is analyzed in terms of their implementation using
different kind of circuits, from those with simple SOP to
FFNNs. The main objective of this paper is to extend the
work done by the same authors on the BDD complexity to
estimate the complexity of APL. The remaining of this
paper is divided as follows: Section two provides the
proposed FFNNM for APL complexity prediction. The
proposed model validation for the simulation and actual
results for IASCAS benchmark circuits are given in section
three. Finally, in section four we conclude this research
work with a summary of our future developments.

II. FEED-FORWARD NEURAL NETWORK MODEL FOR
APL PREDICTION

For each variable count n between 1 and 14 inclusive and
for each term count between 1 and 2n-1, 100 SOP terms
were randomly generated and the CUDD package [14] was
used to determine the APL. This process was repeated until
the average size of the APL complexities (i.e. number of
nodes) became 1. Then the graphs for APL complexities
(Figure 1) were plotted against the product term (min-term)
count for number of variables 1 to 14.
If the data were presented to the NN for training in this case,
only 10 to 14 variable cases may be learnt by the NN and 2
to 9 variable values may be ignored. So in order to provide

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

2

4

6

8

1 0

1 2

1 4

N u m b e r o f M in te rm s

A
P

L
S

iz
e

1 4 va rs
1 3 va rs

1 1 va rs

Figure 1. APL complexity variation (from simulations) for different

variable values

ACCEPTED: P. W. C. Prasad and A. Beg, "A Methodology for Evaluation Time Approximation,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 776-778.

similar importance to all variable values (2 to 14), we
considered a logarithmic transformation of the product
terms.
We used an NN modeling software package called Brain-
Maker version 3.75 [15] to model the APL behavior. Our
experiments involved different number of neurons in the
single hidden layer (some of which are listed in Table 1).

TABLE 1. Configuration & training statistics for APL-complexity NNMs.

Neurons in the
single

hidden layer

Training
Epochs

Training
time

(min:sec)

Training
accuracy

%

Validation
accuracy

%
2 293 3:31 56.2 51.5
3 266 3:53 67.6 64.9
4 102 1:33 97.6 96.9
5 54 0:50 97.9 97.9
7 32 0:31 98.0 98.9
10 47 0:49 97.7 98.6
14 18 0:19 97.9 98.4
18 24 0:26 98.0 98.3

* Brain Maker training parameters: training tolerance = 0.075; testing tolerance =
0.075; learning rate adjustment type = heuristic; initial weights set randomly

We had acquired a total of 10,528 data sets by running BF
simulations. The simulation results (min-terms) were
logarithmically transformed before being utilized for
FFNNM training. We used 90% of the data sets as the
training set and the other 10% as the validation set. A total
of 72 different configurations of FFNNM were used to
collect the data on FFNNM learn-ability. A given FFNNM
was considered to be sufficiently trained when it had learnt
97.5% of the training facts, 1000 epochs were done or when
further convergence was not observed.
Note that we repeated our experiments at least three times
for every FFNNM configuration in order to find the best
prediction performance and to alleviate the chances of
ending up with local minima. We noticed that just 5 neurons
in the hidden layers provided reasonable training and
validation accuracies. The training and validation accuracies
being close to each other (as shown in Table 1) validate the
performance of our FFNNMs. Figures 2 and 3 illustrates the
simulation and FFNNM results for APL complexity
behavior for 10 and 14 variables respectively.

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

Number of Minterms

A
P
L

S
iz
e

Simulation
NN Model

Figure 2. Comparison of APL complexity for 10 variables

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

Number of Minterms

A
P
L

S
iz
e

Simulation
NN Model

Figure 3. Comparison of APL complexity for 14 variables

III. NEURAL NETWORK MODEL VALIDATION
The FFNNM with experimental data has one-time cost of
training, after which the model can be run very quickly (few
micro-seconds or less) to predict the APL complexity of
various functions with different number of variables and
min-terms. Table 2 illustrates the ISCAS benchmark circuit
[16] validation results for simulation using CUDD package
and the proposed FFNNM.
The ISCAS benchmarks are sets of multi-input compound
Boolean expressions, because the randomly generated BFs
used for the experiments were single output SOP
expressions and the benchmark functions were split into

TABLE 2. FFNNM validation with ISCAS benchmark circuits.
Total Mean Value Circuit

Name Actual NN Model
Standard
Deviation Correlation

5xp1 1.029 1.011 0.160 0.941
alu4 0.884 0.897 0.103 0.811

apex4 0.720 0.680 0.030 0.991
apex7 0.881 0.910 0.064 0.961
b12 0.920 0.903 0.150 0.832
b9 0.747 0.906 0.128 0.920

C17 1.157 1.103 0.098 1.000
c8 0.922 0.959 0.085 0.996
cc 0.761 0.904 0.121 0.723
cht 1.045 1.059 0.020 0.853
clip 0.953 0.920 0.043 0.636

cm138a 0.987 0.928 0.000 1.000
cm162a 0.685 0.813 0.050 0.995
cm163a 0.756 0.802 0.078 0.901
cm82a 1.356 1.175 0.013 0.998
cmb 0.374 0.408 0.004 1.000
con1 0.933 0.893 0.059 1.000

cu 0.644 0.702 0.085 0.962
decod 0.666 0.897 0.131 1.000

i6 1.018 1.037 0.024 0.862
i7 1.011 0.973 0.055 0.141
inc 0.836 0.846 0.055 0.685

misex1 0.950 0.926 0.112 0.749
Misex3 0.680 0.871 0.165 0.976

Pcle 0.602 0.690 0.087 0.889
rd53 1.184 0.785 0.649 -0.644
rd73 0.841 0.491 0.087 0.864
Sao2 0.373 0.397 0.019 0.026
Sct 0.763 0.847 0.089 0.973

sqrt8 1.050 0.957 0.115 0.248
Squar5 0.907 0.773 0.339 -0.280

ttt2 0.741 0.790 0.048 0.987
X2 0.866 0.928 0.100 0.893
x4 0.670 0.731 0.054 0.961

z4ml 0.837 0.847 0.079 0.543
Average 0.754

ACCEPTED: P. W. C. Prasad and A. Beg, "A Methodology for Evaluation Time Approximation,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 776-778.

multiple single-output expressions, and then expanded
directly to SOP term. For each of these expressions, the
node count was computed using the CUDD package. The
curves are almost similar geometrically. To increase the
comparability of the data, each APL count was divided by
the peak of the APL count for the given variable count.
For some benchmarks, lack of variation made the
correlation meaningless. But, for the complete set of 541
circuits, the FFNNM correlation coefficient of about 0.754
is very significant, the chances of getting this assuming the
measures are actually uncorrelated is less that 1 in a million:
firm evidence of a significant relation between the two
measures. Given the correlation coefficient, near 0.754, and
that the model is predicting the average value of the node
count (which is liable to considerable deviation) the model
is judged to have passed a non-trivial test of its relevance. It
can be inferred from these results that the FFNNM is a
better model on prediction of the APL complexity if the
input data range is known. Although the benchmark circuits
considered had up to 94 inputs, mostly those benchmarks
consisted of product terms of 1-14 variables. The circuits for
all outputs were measured. It was observed that the term-
variable count combinations were almost all to the left of
the peak complexity, and thus still in region of logarithmic
complexity. So, empirically the most important part of the
model is the logarithmic rise, and it was this part that has
been validly tested by the benchmark circuit analysis.
Due to the above factor, one of the important consideration
is what is the largest variable should be for which these
curves need to be generated in order to justify the FFNNM
for benchmarks. It is obvious that curves are going to be
more difficult to generate for larger number of variables
because of the lack of sample product terms that can be
extracted from the benchmarks.

IV. CONCLUSION
We have introduced a FFNNM for deriving the evaluation
time complexity of BFs. The FFNNMs were obtained
through the training utilizing the experimental data for
random BFs. The evaluation time of the benchmark circuits
follows similar pattern as the FFNNM, so it is shown to
have strong descriptive power for the benchmark data.
Therefore, the FFNNMs are promoted as a method of
predicting for a given BF, APL complexity measures which
provides evaluation time of a VLSI circuit implementation.
In light of the results, we also conclude that the FFNNMs
proposed in this work could be a valuable tool for exploring
the complex computational capabilities of NNs.

REFERENCES
[1] K. Priyank, “VLSI Logic Test, Validation and Verification,

Properties & Applications of Binary Decision Diagrams,” Lecture
Notes, Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT 84112.

[2] I. Wegener, “The Complexity of Boolean functions,” Wiley and
Sons. Inc., 1987.

[3] S. B. Akers, “Binary Decision Diagram,” IEEE Trans.
Computers, Vol. 27, pp. 509-516, 1978.

[4] R. E. Bryant, “Graph−Based Algorithm for Boolean Function
Manipulation,” IEEE Transaction of Computers, Vol. 35, pp. 677-
691, 1986.

[5] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler,
“Minimization of the expected path length in BDDs based on local
changes,” Proceedings of Asia and South Pacific Design
Automation Conference, pp. 866-871, 2004.

[6] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler,
“Minimization of the expected path length in BDDs based on local
changes,” Proceedings of Asia and South Pacific Design
Automation Conference, pp. 866-871, Yokohama, 2004.

[7] Y. Y. Liu, K. H. Wang, T. T. Hwang, and C. L. Liu, “Binary
decision diagrams with minimum expected path length,"
Proceedings of DATE 01, pp. 708–712, 2001.

[8] N. Drechsler, M. Hilgemeier, G. Fey, and R. Drechsler, “Disjoint
Sum of Product Minimization by Evolutionary Algorithms,”
Proceedings of Applications of Evolutionary Computing, Evo
Workshops, pp. 198-207, 2004.

[9] N. Ramalingam, S. Bhanja, “Causal Probabilistic Input
Dependency Learning for Switching model in VLSI Circuits,”
Proceedings of ACM Great Lakes Symposium on VLSI, pp. 112-
115, 2005.

[10] S. Bhanja, K. Lingasubramanian, and N. Ranganathan,
“Estimation of Switching Activity in Sequential Circuits using
Dynamic Bayesian Networks,” Proceedings of VLSI Design 2005,
pp. 586-591, 2005.

[11] M. Raseen, P.W.C. Prasad, and A. Assi, “An Efficient Estimation
of the ROBDD's Complexity” in Integration - the VLSI journal,
Elsevier Publication, Vol. 39(3) pp. 211-228, 2005.

[12] I. Parberry, Circuit Complexity and Neural Networks. MIT Press,
1994.

[13] M., Caudill, “AI Expert: Neural Network Primer,” Miller Freeman
Publications, 1990.

[14] F. Somenzi, “CUDD: CU Decision Diagram Package,”
ftp://vlsi.colorado.edu/ pub/., 2003.

[15] BrainMaker User’s Guide and Reference Manual, 7th ed.
California Scientific Software Press, 1998

[16] M. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE
Transaction on Design and Test, vol. 16, pp. 72-80, 1999.

[17] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
circuits and a target translator in Fortran,” in Proceedings of
International Symposium on Circuit and Systems, Special Sess. On
ATPG and Fault Simulation, 1985, pp. 663-6985.

ACCEPTED: P. W. C. Prasad and A. Beg, "A Methodology for Evaluation Time Approximation,"
in 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS/NEWCAS'07), Montreal, Canada, 2007, pp. 776-778.

ftp://vlsi.colorado.edu/

	Abstract—This paper describes a feed-forward neural network model (FFNNM) for complexity prediction of path related objective functions, mainly average path length (APL) of an arbitrary Boolean function (BF). The proposed model is determined by neural training process of evaluation time derived from the Monte Carlo data of randomly generated BFs. Experimental results show a good correlation between the ISCAS benchmark circuits and those predicted by the FFNNM. This model is capable of providing an estimation of the performance of a circuit prior to its final implementation.
	I. Introduction
	II. Feed-Forward Neural Network Model for APL Prediction
	III. Neural Network Model Validation
	IV. Conclusion
	We have introduced a FFNNM for deriving the evaluation time complexity of BFs. The FFNNMs were obtained through the training utilizing the experimental data for random BFs. The evaluation time of the benchmark circuits follows similar pattern as the FFNNM, so it is shown to have strong descriptive power for the benchmark data. Therefore, the FFNNMs are promoted as a method of predicting for a given BF, APL complexity measures which provides evaluation time of a VLSI circuit implementation. In light of the results, we also conclude that the FFNNMs proposed in this work could be a valuable tool for exploring the complex computational capabilities of NNs.

	References

A Methodology for Evaluation Time Approximation

Prasad P. W. C.

College of Information Technology

United Arab Emirates University

Al-Ain, UAE

prasadc@uaeu.ac.ae

Azam Beg

College of Information Technology

United Arab Emirates University

Al-Ain, UAE

abeg@uaeu.ac.ae

Abstract—This paper describes a feed-forward neural network model (FFNNM) for complexity prediction of path related objective functions, mainly average path length (APL) of an arbitrary Boolean function (BF). The proposed model is determined by neural training process of evaluation time derived from the Monte Carlo data of randomly generated BFs. Experimental results show a good correlation between the ISCAS benchmark circuits and those predicted by the FFNNM. This model is capable of providing an estimation of the performance of a circuit prior to its final implementation.

I. Introduction

One of the most important functions of CAD tools is to provide robust and efficient data structures to represent BFs as well as fast algorithms to manipulate these data structures [1], [2]. BDD was introduced by Akers [3] in 1978 as a data structure for efficient representation and manipulation of BFs. Over the years, the number of nodes in a BDD became a major concern since it is proportional to the complexity of the Boolean circuits [4]. However, the number of nodes is not directly related to the evaluation time for a BF. Rather the evaluation time is directly related to the total expected path length of a BDD [5]-[7]. The minimization of average evaluation time is very useful, in embedded system using real-time operating system (RTOS). Building an actual BDD model needs time for implementation, verification and testing [8]. So it will be useful to have an estimation of the BDD complexity prior to making decisions on the feasibility of the design. There have been a lot of research works done on the estimation of combinational and sequential circuit parameters from the exact BF describing the circuit in which BF plays a major role [9]-[11]. In this paper, we focus on the APL of a BDD, which is the sum of the path lengths over all assignments of values to the variables divided by the number of assignments.

Neural networks (NNs) have proven their usefulness in the area of pattern recognition, prediction applications and for their computational properties [12], [13]. The measure of efficiency of the circuits has been addressed in relation with the area of circuit implementation, where the complexity of BFs is analyzed in terms of their implementation using different kind of circuits, from those with simple SOP to FFNNs. The main objective of this paper is to extend the work done by the same authors on the BDD complexity to estimate the complexity of APL. The remaining of this paper is divided as follows: Section two provides the proposed FFNNM for APL complexity prediction. The proposed model validation for the simulation and actual results for IASCAS benchmark circuits are given in section three. Finally, in section four we conclude this research work with a summary of our future developments.

II. Feed-Forward Neural Network Model for APL Prediction

For each variable count n between 1 and 14 inclusive and for each term count between 1 and 2n-1, 100 SOP terms were randomly generated and the CUDD package [14] was used to determine the APL. This process was repeated until the average size of the APL complexities (i.e. number of nodes) became 1. Then the graphs for APL complexities (Figure 1) were plotted against the product term (min-term) count for number of variables 1 to 14.

If the data were presented to the NN for training in this case, only 10 to 14 variable cases may be learnt by the NN and 2 to 9 variable values may be ignored. So in order to provide

[image: image1.wmf]0

500

1000

1500

2000

2500

3000

3500

4000

0

2

4

6

8

10

12

14

Number of Minterms

APL Size

14 vars

13 vars

11 vars

Figure 1. APL complexity variation (from simulations) for different variable values

similar importance to all variable values (2 to 14), we considered a logarithmic transformation of the product terms.

We used an NN modeling software package called Brain-Maker version 3.75 [15] to model the APL behavior. Our experiments involved different number of neurons in the single hidden layer (some of which are listed in Table 1).

Table 1. Configuration & training statistics for APL-complexity NNMs.

		Neurons in the single
hidden layer

		Training

Epochs

		Training
time
(min:sec)

		Training
accuracy

%

		Validation
accuracy

%

		2

		293

		3:31

		56.2

		51.5

		3

		266

		3:53

		67.6

		64.9

		4

		102

		1:33

		97.6

		96.9

		5

		54

		0:50

		97.9

		97.9

		7

		32

		0:31

		98.0

		98.9

		10

		47

		0:49

		97.7

		98.6

		14

		18

		0:19

		97.9

		98.4

		18

		24

		0:26

		98.0

		98.3

* Brain Maker training parameters: training tolerance = 0.075; testing tolerance = 0.075; learning rate adjustment type = heuristic; initial weights set randomly

We had acquired a total of 10,528 data sets by running BF simulations. The simulation results (min-terms) were logarithmically transformed before being utilized for FFNNM training. We used 90% of the data sets as the training set and the other 10% as the validation set. A total of 72 different configurations of FFNNM were used to collect the data on FFNNM learn-ability. A given FFNNM was considered to be sufficiently trained when it had learnt 97.5% of the training facts, 1000 epochs were done or when further convergence was not observed.

Note that we repeated our experiments at least three times for every FFNNM configuration in order to find the best prediction performance and to alleviate the chances of ending up with local minima. We noticed that just 5 neurons in the hidden layers provided reasonable training and validation accuracies. The training and validation accuracies being close to each other (as shown in Table 1) validate the performance of our FFNNMs. Figures 2 and 3 illustrates the simulation and FFNNM results for APL complexity behavior for 10 and 14 variables respectively.

[image: image2.emf]0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

8

Number of Minterms

APL Size

Simulation

NN Model

Figure 2. Comparison of APL complexity for 10 variables

[image: image3.emf]0 500 1000 1500 2000 2500 3000 3500 4000

0

2

4

6

8

10

12

Number of Minterms

APL Size

Simulation

NN Model

Figure 3. Comparison of APL complexity for 14 variables

III. Neural Network Model Validation

The FFNNM with experimental data has one-time cost of training, after which the model can be run very quickly (few micro-seconds or less) to predict the APL complexity of various functions with different number of variables and min-terms. Table 2 illustrates the ISCAS benchmark circuit [16] validation results for simulation using CUDD package and the proposed FFNNM.

The ISCAS benchmarks are sets of multi-input compound Boolean expressions, because the randomly generated BFs used for the experiments were single output SOP expressions and the benchmark functions were split into

Table 2. FFNNM validation with ISCAS benchmark circuits.

		Circuit Name

		Total Mean Value

		Standard Deviation

		Correlation

		

		Actual

		NN Model

		

		

		5xp1

		1.029

		1.011

		0.160

		0.941

		alu4

		0.884

		0.897

		0.103

		0.811

		apex4

		0.720

		0.680

		0.030

		0.991

		apex7

		0.881

		0.910

		0.064

		0.961

		b12

		0.920

		0.903

		0.150

		0.832

		b9

		0.747

		0.906

		0.128

		0.920

		C17

		1.157

		1.103

		0.098

		1.000

		c8

		0.922

		0.959

		0.085

		0.996

		cc

		0.761

		0.904

		0.121

		0.723

		cht

		1.045

		1.059

		0.020

		0.853

		clip

		0.953

		0.920

		0.043

		0.636

		cm138a

		0.987

		0.928

		0.000

		1.000

		cm162a

		0.685

		0.813

		0.050

		0.995

		cm163a

		0.756

		0.802

		0.078

		0.901

		cm82a

		1.356

		1.175

		0.013

		0.998

		cmb

		0.374

		0.408

		0.004

		1.000

		con1

		0.933

		0.893

		0.059

		1.000

		cu

		0.644

		0.702

		0.085

		0.962

		decod

		0.666

		0.897

		0.131

		1.000

		i6

		1.018

		1.037

		0.024

		0.862

		i7

		1.011

		0.973

		0.055

		0.141

		inc

		0.836

		0.846

		0.055

		0.685

		misex1

		0.950

		0.926

		0.112

		0.749

		Misex3

		0.680

		0.871

		0.165

		0.976

		Pcle

		0.602

		0.690

		0.087

		0.889

		rd53

		1.184

		0.785

		0.649

		-0.644

		rd73

		0.841

		0.491

		0.087

		0.864

		Sao2

		0.373

		0.397

		0.019

		0.026

		Sct

		0.763

		0.847

		0.089

		0.973

		sqrt8

		1.050

		0.957

		0.115

		0.248

		Squar5

		0.907

		0.773

		0.339

		-0.280

		ttt2

		0.741

		0.790

		0.048

		0.987

		X2

		0.866

		0.928

		0.100

		0.893

		x4

		0.670

		0.731

		0.054

		0.961

		z4ml

		0.837

		0.847

		0.079

		0.543

		Average

		0.754

multiple single-output expressions, and then expanded directly to SOP term. For each of these expressions, the node count was computed using the CUDD package. The curves are almost similar geometrically. To increase the comparability of the data, each APL count was divided by the peak of the APL count for the given variable count.

For some benchmarks, lack of variation made the correlation meaningless. But, for the complete set of 541 circuits, the FFNNM correlation coefficient of about 0.754 is very significant, the chances of getting this assuming the measures are actually uncorrelated is less that 1 in a million: firm evidence of a significant relation between the two measures. Given the correlation coefficient, near 0.754, and that the model is predicting the average value of the node count (which is liable to considerable deviation) the model is judged to have passed a non-trivial test of its relevance. It can be inferred from these results that the FFNNM is a better model on prediction of the APL complexity if the input data range is known. Although the benchmark circuits considered had up to 94 inputs, mostly those benchmarks consisted of product terms of 1-14 variables. The circuits for all outputs were measured. It was observed that the term-variable count combinations were almost all to the left of the peak complexity, and thus still in region of logarithmic complexity. So, empirically the most important part of the model is the logarithmic rise, and it was this part that has been validly tested by the benchmark circuit analysis.

Due to the above factor, one of the important consideration is what is the largest variable should be for which these curves need to be generated in order to justify the FFNNM for benchmarks. It is obvious that curves are going to be more difficult to generate for larger number of variables because of the lack of sample product terms that can be extracted from the benchmarks.

IV. Conclusion

We have introduced a FFNNM for deriving the evaluation time complexity of BFs. The FFNNMs were obtained through the training utilizing the experimental data for random BFs. The evaluation time of the benchmark circuits follows similar pattern as the FFNNM, so it is shown to have strong descriptive power for the benchmark data. Therefore, the FFNNMs are promoted as a method of predicting for a given BF, APL complexity measures which provides evaluation time of a VLSI circuit implementation. In light of the results, we also conclude that the FFNNMs proposed in this work could be a valuable tool for exploring the complex computational capabilities of NNs.

References

[1]
K. Priyank, “VLSI Logic Test, Validation and Verification, Properties & Applications of Binary Decision Diagrams,” Lecture Notes, Department of Electrical and Computer Engineering University of Utah, Salt Lake City, UT 84112.

[2]
I. Wegener, “The Complexity of Boolean functions,” Wiley and Sons. Inc., 1987.

[3]

S. B. Akers, “Binary Decision Diagram,” IEEE Trans. Computers, Vol. 27, pp. 509-516, 1978.

[4]
R. E. Bryant, “Graph(Based Algorithm for Boolean Function Manipulation,” IEEE Transaction of Computers, Vol. 35, pp. 677-691, 1986.

[5]
R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler, “Minimization of the expected path length in BDDs based on local changes,” Proceedings of Asia and South Pacific Design Automation Conference, pp. 866-871, 2004.

[6]

R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler, “Minimization of the expected path length in BDDs based on local changes,” Proceedings of Asia and South Pacific Design Automation Conference, pp. 866-871, Yokohama, 2004.

[7]
Y. Y. Liu, K. H. Wang, T. T. Hwang, and C. L. Liu, “Binary decision diagrams with minimum expected path length," Proceedings of DATE 01, pp. 708–712, 2001.

[8]
N. Drechsler, M. Hilgemeier, G. Fey, and R. Drechsler, “Disjoint Sum of Product Minimization by Evolutionary Algorithms,” Proceedings of Applications of Evolutionary Computing, Evo Workshops, pp. 198-207, 2004.

[9]
N. Ramalingam, S. Bhanja, “Causal Probabilistic Input Dependency Learning for Switching model in VLSI Circuits,” Proceedings of ACM Great Lakes Symposium on VLSI, pp. 112-115, 2005.

[10]
S. Bhanja, K. Lingasubramanian, and N. Ranganathan, “Estimation of Switching Activity in Sequential Circuits using Dynamic Bayesian Networks,” Proceedings of VLSI Design 2005, pp. 586-591, 2005.

[11]
M. Raseen, P.W.C. Prasad, and A. Assi, “An Efficient Estimation of the ROBDD's Complexity” in Integration - the VLSI journal, Elsevier Publication, Vol. 39(3) pp. 211-228, 2005.

[12]

I. Parberry, Circuit Complexity and Neural Networks. MIT Press, 1994.

[13]
M., Caudill, “AI Expert: Neural Network Primer,” Miller Freeman Publications, 1990.

[14]

F. Somenzi, “CUDD: CU Decision Diagram Package,” ftp://vlsi.colorado.edu/ pub/., 2003.

[15]
BrainMaker User’s Guide and Reference Manual, 7th ed. California Scientific Software Press, 1998

[16]
M. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering,” IEEE Transaction on Design and Test, vol. 16, pp. 72-80, 1999.

[17]
F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational circuits and a target translator in Fortran,” in Proceedings of International Symposium on Circuit and Systems, Special Sess. On ATPG and Fault Simulation, 1985, pp. 663-6985.

