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Abstract—This paper describes a feed-forward neural network 
model (FFNNM) for complexity prediction of path related 
objective functions, mainly average path length (APL) of an 
arbitrary Boolean function (BF).  The proposed model is 
determined by neural training process of evaluation time 
derived from the Monte Carlo data of randomly generated 
BFs. Experimental results show a good correlation between the 
ISCAS benchmark circuits and those predicted by the 
FFNNM. This model is capable of providing an estimation of 
the performance of a circuit prior to its final implementation. 

I. INTRODUCTION 
One of the most important functions of CAD tools is to 
provide robust and efficient data structures to represent BFs 
as well as fast algorithms to manipulate these data structures 
[1], [2]. BDD was introduced by Akers [3] in 1978 as a data 
structure for efficient representation and manipulation of 
BFs. Over the years, the number of nodes in a BDD became 
a major concern since it is proportional to the complexity of 
the Boolean circuits [4]. However, the number of nodes is 
not directly related to the evaluation time for a BF. Rather 
the evaluation time is directly related to the total expected 
path length of a BDD [5]-[7]. The minimization of average 
evaluation time is very useful, in embedded system using 
real-time operating system (RTOS). Building an actual 
BDD model needs time for implementation, verification and 
testing [8]. So it will be useful to have an estimation of the 
BDD complexity prior to making decisions on the feasibility 
of the design. There have been a lot of research works done 
on the estimation of combinational and sequential circuit 
parameters from the exact BF describing the circuit in which 
BF plays a major role [9]-[11]. In this paper, we focus on 
the APL of a BDD, which is the sum of the path lengths 
over all assignments of values to the variables divided by 
the number of assignments. 
Neural networks (NNs) have proven their usefulness in the 
area of pattern recognition, prediction applications and for 
their computational properties [12], [13]. The measure of 
efficiency of the circuits has been addressed in relation with 

the area of circuit implementation, where the complexity of 
BFs is analyzed in terms of their implementation using 
different kind of circuits, from those with simple SOP to 
FFNNs. The main objective of this paper is to extend the 
work done by the same authors on the BDD complexity to 
estimate the complexity of APL. The remaining of this 
paper is divided as follows: Section two provides the 
proposed FFNNM for APL complexity prediction. The 
proposed model validation for the simulation and actual 
results for IASCAS benchmark circuits are given in section 
three. Finally, in section four we conclude this research 
work with a summary of our future developments. 

II. FEED-FORWARD NEURAL NETWORK MODEL FOR 
APL PREDICTION 

For each variable count n between 1 and 14 inclusive and 
for each term count between 1 and 2n-1, 100 SOP terms 
were randomly generated and the CUDD package [14] was 
used to determine the APL. This process was repeated until 
the average size of the APL complexities (i.e. number of 
nodes) became 1. Then the graphs for APL complexities 
(Figure 1) were plotted against the product term (min-term) 
count for number of variables 1 to 14.  
If the data were presented to the NN for training in this case, 
only 10 to 14 variable cases may be learnt by the NN and 2 
to 9 variable values may be ignored. So in order to provide 
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Figure 1. APL complexity variation (from simulations) for different 

variable values 
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similar importance to all variable values (2 to 14), we 
considered a logarithmic transformation of the product 
terms. 
We used an NN modeling software package called Brain-
Maker version 3.75 [15] to model the APL behavior. Our 
experiments involved different number of neurons in the 
single hidden layer (some of which are listed in Table 1).  
 
TABLE 1. Configuration & training statistics for APL-complexity NNMs.  

Neurons in the 
single 

hidden layer 

Training 
Epochs 

Training 
time 

(min:sec) 

Training 
accuracy 

% 

Validation
accuracy 

% 
2 293 3:31 56.2 51.5
3 266 3:53 67.6 64.9
4 102 1:33 97.6 96.9
5 54 0:50 97.9 97.9
7 32 0:31 98.0 98.9
10 47 0:49 97.7 98.6
14 18 0:19 97.9 98.4
18 24 0:26 98.0 98.3

* Brain Maker training parameters: training tolerance = 0.075; testing tolerance = 
0.075; learning rate adjustment type = heuristic; initial weights set randomly  
 
We had acquired a total of 10,528 data sets by running BF 
simulations. The simulation results (min-terms) were 
logarithmically transformed before being utilized for 
FFNNM training. We used 90% of the data sets as the 
training set and the other 10% as the validation set. A total 
of 72 different configurations of FFNNM were used to 
collect the data on FFNNM learn-ability. A given FFNNM 
was considered to be sufficiently trained when it had learnt 
97.5% of the training facts, 1000 epochs were done or when 
further convergence was not observed.  
Note that we repeated our experiments at least three times 
for every FFNNM configuration in order to find the best 
prediction performance and to alleviate the chances of 
ending up with local minima. We noticed that just 5 neurons 
in the hidden layers provided reasonable training and 
validation accuracies. The training and validation accuracies 
being close to each other (as shown in Table 1) validate the 
performance of our FFNNMs. Figures 2 and 3 illustrates the 
simulation and FFNNM results for APL complexity 
behavior for 10 and 14 variables respectively.  
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Figure 2.  Comparison of APL complexity for 10 variables 
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Figure 3.  Comparison of APL complexity for 14 variables 

III. NEURAL NETWORK MODEL VALIDATION 
The FFNNM with experimental data has one-time cost of 
training, after which the model can be run very quickly (few 
micro-seconds or less) to predict the APL complexity of 
various functions with different number of variables and 
min-terms. Table 2 illustrates the ISCAS benchmark circuit 
[16] validation results for simulation using CUDD package 
and the proposed FFNNM. 
The ISCAS benchmarks are sets of multi-input compound 
Boolean expressions, because the randomly generated BFs 
used for the experiments were single output SOP 
expressions and the benchmark functions were split into 
 

TABLE 2. FFNNM  validation with ISCAS benchmark circuits. 
Total Mean Value Circuit 

Name Actual NN Model 
Standard 
Deviation Correlation 

5xp1 1.029 1.011 0.160 0.941
alu4 0.884 0.897 0.103 0.811

apex4 0.720 0.680 0.030 0.991
apex7 0.881 0.910 0.064 0.961
b12 0.920 0.903 0.150 0.832
b9 0.747 0.906 0.128 0.920

C17 1.157 1.103 0.098 1.000
c8 0.922 0.959 0.085 0.996
cc 0.761 0.904 0.121 0.723
cht 1.045 1.059 0.020 0.853
clip 0.953 0.920 0.043 0.636

cm138a 0.987 0.928 0.000 1.000
cm162a 0.685 0.813 0.050 0.995
cm163a 0.756 0.802 0.078 0.901
cm82a 1.356 1.175 0.013 0.998
cmb 0.374 0.408 0.004 1.000
con1 0.933 0.893 0.059 1.000

cu 0.644 0.702 0.085 0.962
decod 0.666 0.897 0.131 1.000

i6 1.018 1.037 0.024 0.862
i7 1.011 0.973 0.055 0.141
inc 0.836 0.846 0.055 0.685

misex1 0.950 0.926 0.112 0.749
Misex3 0.680 0.871 0.165 0.976

Pcle 0.602 0.690 0.087 0.889
rd53 1.184 0.785 0.649 -0.644
rd73 0.841 0.491 0.087 0.864
Sao2 0.373 0.397 0.019 0.026
Sct 0.763 0.847 0.089 0.973

sqrt8 1.050 0.957 0.115 0.248
Squar5 0.907 0.773 0.339 -0.280

ttt2 0.741 0.790 0.048 0.987
X2 0.866 0.928 0.100 0.893
x4 0.670 0.731 0.054 0.961

z4ml 0.837 0.847 0.079 0.543
Average 0.754 
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multiple single-output expressions, and then expanded 
directly to SOP term. For each of these expressions, the 
node count was computed using the CUDD package. The 
curves are almost similar geometrically. To increase the 
comparability of the data, each APL count was divided by 
the peak of the APL count for the given variable count.  
For some benchmarks, lack of variation made the 
correlation meaningless. But, for the complete set of 541 
circuits, the FFNNM correlation coefficient of about 0.754 
is very significant, the chances of getting this assuming the 
measures are actually uncorrelated is less that 1 in a million: 
firm evidence of a significant relation between the two 
measures. Given the correlation coefficient, near 0.754, and 
that the model is predicting the average value of the node 
count (which is liable to considerable deviation) the model 
is judged to have passed a non-trivial test of its relevance. It 
can be inferred from these results that the FFNNM is a 
better model on prediction of the APL complexity if the 
input data range is known. Although the benchmark circuits 
considered had up to 94 inputs, mostly those benchmarks 
consisted of product terms of 1-14 variables. The circuits for 
all outputs were measured. It was observed that the term-
variable count combinations were almost all to the left of 
the peak complexity, and thus still in region of logarithmic 
complexity. So, empirically the most important part of the 
model is the logarithmic rise, and it was this part that has 
been validly tested by the benchmark circuit analysis.  
Due to the above factor, one of the important consideration 
is what is the largest variable should be for which these 
curves need to be generated in order to justify the FFNNM 
for benchmarks. It is obvious that curves are going to be 
more difficult to generate for larger number of variables 
because of the lack of sample product terms that can be 
extracted from the benchmarks.  

IV. CONCLUSION  
We have introduced a FFNNM for deriving the evaluation 
time complexity of BFs. The FFNNMs were obtained 
through the training utilizing the experimental data for 
random BFs. The evaluation time of the benchmark circuits 
follows similar pattern as the FFNNM, so it is shown to 
have strong descriptive power for the benchmark data. 
Therefore, the FFNNMs are promoted as a method of 
predicting for a given BF, APL complexity measures which 
provides evaluation time of a VLSI circuit implementation. 
In light of the results, we also conclude that the FFNNMs 
proposed in this work could be a valuable tool for exploring 
the complex computational capabilities of NNs. 
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Abstract—This paper describes a feed-forward neural network model (FFNNM) for complexity prediction of path related objective functions, mainly average path length (APL) of an arbitrary Boolean function (BF).  The proposed model is determined by neural training process of evaluation time derived from the Monte Carlo data of randomly generated BFs. Experimental results show a good correlation between the ISCAS benchmark circuits and those predicted by the FFNNM. This model is capable of providing an estimation of the performance of a circuit prior to its final implementation.

I. Introduction

One of the most important functions of CAD tools is to provide robust and efficient data structures to represent BFs as well as fast algorithms to manipulate these data structures [1], [2]. BDD was introduced by Akers [3] in 1978 as a data structure for efficient representation and manipulation of BFs. Over the years, the number of nodes in a BDD became a major concern since it is proportional to the complexity of the Boolean circuits [4]. However, the number of nodes is not directly related to the evaluation time for a BF. Rather the evaluation time is directly related to the total expected path length of a BDD [5]-[7]. The minimization of average evaluation time is very useful, in embedded system using real-time operating system (RTOS). Building an actual BDD model needs time for implementation, verification and testing [8]. So it will be useful to have an estimation of the BDD complexity prior to making decisions on the feasibility of the design. There have been a lot of research works done on the estimation of combinational and sequential circuit parameters from the exact BF describing the circuit in which BF plays a major role [9]-[11]. In this paper, we focus on the APL of a BDD, which is the sum of the path lengths over all assignments of values to the variables divided by the number of assignments.


Neural networks (NNs) have proven their usefulness in the area of pattern recognition, prediction applications and for their computational properties [12], [13]. The measure of efficiency of the circuits has been addressed in relation with the area of circuit implementation, where the complexity of BFs is analyzed in terms of their implementation using different kind of circuits, from those with simple SOP to FFNNs. The main objective of this paper is to extend the work done by the same authors on the BDD complexity to estimate the complexity of APL. The remaining of this paper is divided as follows: Section two provides the proposed FFNNM for APL complexity prediction. The proposed model validation for the simulation and actual results for IASCAS benchmark circuits are given in section three. Finally, in section four we conclude this research work with a summary of our future developments.


II. Feed-Forward Neural Network Model for APL Prediction

For each variable count n between 1 and 14 inclusive and for each term count between 1 and 2n-1, 100 SOP terms were randomly generated and the CUDD package [14] was used to determine the APL. This process was repeated until the average size of the APL complexities (i.e. number of nodes) became 1. Then the graphs for APL complexities (Figure 1) were plotted against the product term (min-term) count for number of variables 1 to 14. 

If the data were presented to the NN for training in this case, only 10 to 14 variable cases may be learnt by the NN and 2 to 9 variable values may be ignored. So in order to provide
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Figure 1. APL complexity variation (from simulations) for different variable values


similar importance to all variable values (2 to 14), we considered a logarithmic transformation of the product terms.

We used an NN modeling software package called Brain-Maker version 3.75 [15] to model the APL behavior. Our experiments involved different number of neurons in the single hidden layer (some of which are listed in Table 1). 

Table 1. Configuration & training statistics for APL-complexity NNMs. 

		Neurons in the single
hidden layer

		Training


Epochs

		Training
time
(min:sec)

		Training
accuracy


%

		Validation
accuracy


%



		2

		293

		3:31

		56.2

		51.5



		3

		266

		3:53

		67.6

		64.9



		4

		102

		1:33

		97.6

		96.9



		5

		54

		0:50

		97.9

		97.9



		7

		32

		0:31

		98.0

		98.9



		10

		47

		0:49

		97.7

		98.6



		14

		18

		0:19

		97.9

		98.4



		18

		24

		0:26

		98.0

		98.3





* Brain Maker training parameters: training tolerance = 0.075; testing tolerance = 0.075; learning rate adjustment type = heuristic; initial weights set randomly 


We had acquired a total of 10,528 data sets by running BF simulations. The simulation results (min-terms) were logarithmically transformed before being utilized for FFNNM training. We used 90% of the data sets as the training set and the other 10% as the validation set. A total of 72 different configurations of FFNNM were used to collect the data on FFNNM learn-ability. A given FFNNM was considered to be sufficiently trained when it had learnt 97.5% of the training facts, 1000 epochs were done or when further convergence was not observed. 


Note that we repeated our experiments at least three times for every FFNNM configuration in order to find the best prediction performance and to alleviate the chances of ending up with local minima. We noticed that just 5 neurons in the hidden layers provided reasonable training and validation accuracies. The training and validation accuracies being close to each other (as shown in Table 1) validate the performance of our FFNNMs. Figures 2 and 3 illustrates the simulation and FFNNM results for APL complexity behavior for 10 and 14 variables respectively. 
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Figure 2.  Comparison of APL complexity for 10 variables
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Figure 3.  Comparison of APL complexity for 14 variables

III. Neural Network Model Validation

The FFNNM with experimental data has one-time cost of training, after which the model can be run very quickly (few micro-seconds or less) to predict the APL complexity of various functions with different number of variables and min-terms. Table 2 illustrates the ISCAS benchmark circuit [16] validation results for simulation using CUDD package and the proposed FFNNM.

The ISCAS benchmarks are sets of multi-input compound Boolean expressions, because the randomly generated BFs used for the experiments were single output SOP expressions and the benchmark functions were split into

Table 2. FFNNM  validation with ISCAS benchmark circuits.


		Circuit Name

		Total Mean Value

		Standard Deviation

		Correlation



		

		Actual

		NN Model

		

		



		5xp1

		1.029

		1.011

		0.160

		0.941



		alu4

		0.884

		0.897

		0.103

		0.811



		apex4

		0.720

		0.680

		0.030

		0.991



		apex7

		0.881

		0.910

		0.064

		0.961



		b12

		0.920

		0.903

		0.150

		0.832



		b9

		0.747

		0.906

		0.128

		0.920



		C17

		1.157

		1.103

		0.098

		1.000



		c8

		0.922

		0.959

		0.085

		0.996



		cc

		0.761

		0.904

		0.121

		0.723



		cht

		1.045

		1.059

		0.020

		0.853



		clip

		0.953

		0.920

		0.043

		0.636



		cm138a

		0.987

		0.928

		0.000

		1.000



		cm162a

		0.685

		0.813

		0.050

		0.995



		cm163a

		0.756

		0.802

		0.078

		0.901



		cm82a

		1.356

		1.175

		0.013

		0.998



		cmb

		0.374

		0.408

		0.004

		1.000



		con1

		0.933

		0.893

		0.059

		1.000



		cu

		0.644

		0.702

		0.085

		0.962



		decod

		0.666

		0.897

		0.131

		1.000



		i6

		1.018

		1.037

		0.024

		0.862



		i7

		1.011

		0.973

		0.055

		0.141



		inc

		0.836

		0.846

		0.055

		0.685



		misex1

		0.950

		0.926

		0.112

		0.749



		Misex3

		0.680

		0.871

		0.165

		0.976



		Pcle

		0.602

		0.690

		0.087

		0.889



		rd53

		1.184

		0.785

		0.649

		-0.644



		rd73

		0.841

		0.491

		0.087

		0.864



		Sao2

		0.373

		0.397

		0.019

		0.026



		Sct

		0.763

		0.847

		0.089

		0.973



		sqrt8

		1.050

		0.957

		0.115

		0.248



		Squar5

		0.907

		0.773

		0.339

		-0.280



		ttt2

		0.741

		0.790

		0.048

		0.987



		X2

		0.866

		0.928

		0.100

		0.893



		x4

		0.670

		0.731

		0.054

		0.961



		z4ml

		0.837

		0.847

		0.079

		0.543



		Average

		0.754





multiple single-output expressions, and then expanded directly to SOP term. For each of these expressions, the node count was computed using the CUDD package. The curves are almost similar geometrically. To increase the comparability of the data, each APL count was divided by the peak of the APL count for the given variable count. 


For some benchmarks, lack of variation made the correlation meaningless. But, for the complete set of 541 circuits, the FFNNM correlation coefficient of about 0.754 is very significant, the chances of getting this assuming the measures are actually uncorrelated is less that 1 in a million: firm evidence of a significant relation between the two measures. Given the correlation coefficient, near 0.754, and that the model is predicting the average value of the node count (which is liable to considerable deviation) the model is judged to have passed a non-trivial test of its relevance. It can be inferred from these results that the FFNNM is a better model on prediction of the APL complexity if the input data range is known. Although the benchmark circuits considered had up to 94 inputs, mostly those benchmarks consisted of product terms of 1-14 variables. The circuits for all outputs were measured. It was observed that the term-variable count combinations were almost all to the left of the peak complexity, and thus still in region of logarithmic complexity. So, empirically the most important part of the model is the logarithmic rise, and it was this part that has been validly tested by the benchmark circuit analysis. 


Due to the above factor, one of the important consideration is what is the largest variable should be for which these curves need to be generated in order to justify the FFNNM for benchmarks. It is obvious that curves are going to be more difficult to generate for larger number of variables because of the lack of sample product terms that can be extracted from the benchmarks. 


IV. Conclusion 

We have introduced a FFNNM for deriving the evaluation time complexity of BFs. The FFNNMs were obtained through the training utilizing the experimental data for random BFs. The evaluation time of the benchmark circuits follows similar pattern as the FFNNM, so it is shown to have strong descriptive power for the benchmark data. Therefore, the FFNNMs are promoted as a method of predicting for a given BF, APL complexity measures which provides evaluation time of a VLSI circuit implementation. In light of the results, we also conclude that the FFNNMs proposed in this work could be a valuable tool for exploring the complex computational capabilities of NNs.
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