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Recent cache schemes, such as trace cache, (fixed-sized) block cache, and variable-sized block 
cache, have helped improve instruction fetch bandwidth beyond the conventional instruction caches. 
Trace- and block-caches function by capturing the dynamic sequence of instructions. For industry 
standard benchmarks (e.g., SPEC2000), performance comparison of various configurations of these 
caches using simulations can take days or even weeks. In this paper, we demonstrate that neural 
network models can be time-efficient alternatives to the simulations. The models are able to predict 
the multi-variate and non-linear behavior of trace- and block-caches, in terms of trace miss rate and 
average trace length. The models can be potentially used in compiler optimization or in pedagogical 
settings.  

Keywords: Basic blocks, trace cache, block cache, variable sized block cache, neural network, cache-
modeling, compiler optimization   

1.   Introduction 

The basic storage unit of conventional instruction cache (IC) is a cache line that stores a 
set of memory-adjacent instructions. IC's tend to possess high latency and low bandwidth 
[ 1]. To increase the cache bandwidth sequences of executed instructions are stored in 
caches such as trace-cache (TC), (fixed-sized) block-cache (BC) and variable-sized block 
cache (VSBC) [ 2][ 3][ 4]. However, the behavioral study of these caches using simulations 
can be quite time- and computing resource-intensive. Even the trace-driven simulations 
with benchmarks such as SPEC2000 can span over days or weeks [ 5][ 6]. This paper 
presents time-efficient cache models as an alternative to simulations. We utilized a set of 
data collected from SPEC2000 (integer) benchmark simulations on three different trace- 
and block-based cache schemes and created a multi-variate model based on neural 
networks (NN's). The NN models (NNM's) are able to predict the trace miss rates and 
average trace lengths using: (1) cache parameters (e.g., size, associativity, etc.) and (2) 
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program's characteristics (i.e., counts of basic blocks of different sizes). The NNM 
predictions match the simulation results with accuracy comparable to analytical models 
(proposed by other researchers in the past). Our NNM's have potential applications in 
compiler optimization or pedagogy.  
Section 2 of this paper summarizes the introductory topics such as basic (instruction) 
blocks, conventional caches, trace cache, and block-based caches.  This section also 
includes the basics of NN's and their applications to the field of computer architecture. 
Section 3 goes into the details of NNM implementation for trace- and block-caches. 
Details of data collection and processing, NNM training and validation, comparison of 
simulation and NN modeling speeds are included in this section as well. How the NNM 
can be used to analyze the cache performance for an arbitrary program is also presented 
in this section. Section 4 concludes the paper and proposes potential applications and 
ideas for extending this research.  

2.   Preliminaries & Previous Research 

2.1.   Basic Blocks  

A basic (instruction) block is a set of contiguous instructions that contains only a single 
control instruction, such as a conditional or unconditional jump, or a return. The control 
instruction is the last instruction of the basic block. The beginning of a basic block is 
called block head, and the end is called block tail. Block head is also the destination of a 
control transfer instruction. 

2.2.   Caching  

In a computer system, caching operation is based on the observation that the common 
programs tend to access contiguous locations in memory (spatial locality) or the same 
memory locations repetitively (temporal locality). This program behavior results in low 
latency (how fast the memory contents are available) and higher bandwidth (how much 
data is readily available) for caches. Effectively, the caches try to approximate the 
availability of ideally large memory that the programmers expect  [ 1]. One or more levels 
of cache for data and/or instruction storage can be used between the processor and the 
main memory; placing fast caches close to the processor reduces memory latency by 
storing frequently or recently accessed data and instructions  [ 7].  

2.3.   Trace Cache 

The basic data unit of conventional instruction cache (IC) is a cache line that stores a set 
of memory-adjacent instructions. The usual cache line lengths are 16 to 64 bytes. IC 
although simple to implement, tends to be exhibit high latency and low bandwidth. 
Typically single-ported reads limit IC’s bandwidth to a single basic block, because of a 
taken jump to a non-adjacent memory location. For better performance, more basic 
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blocks need to be fetched every cycle, which was made possible by Rotenberg et al’s TC 
and other follow-up schemes (discussed in the next section) [ 2][ 3][ 8].  
TC captures instructions in the order they execute. The matching of the starting address 
of a TC line and the predictions for branches inside the line are the two conditions that 
cause the delivery of instructions (to the instruction decoder) from TC instead of IC. The 
block diagram of a TC-based superscalar microarchitecture is shown in Fig. 1 
[ 2][ 9][ 10][ 11].  

 

 
Fig. 1. A superscalar processor with a trace cache (TC) 

2.4.   Block Caches 

Black, et al’s [ 3] BC is a variation of TC that includes identification of individual blocks 
in the stored traces. The block identifiers (pointers) are used to assemble the traces on a 
trace hit. In BC, two separate cache structures are used, one (called block cache) to store 
the basic blocks, and the other (called trace table) to store the block pointers. In [ 3], the 
block cache structure is replicated 4 times. The underlying assumption that the all basic 
blocks have fixed length increases the likelihood of block fragmentation. (TC in 
comparison causes trace-level fragmentation). Black, et al [ 3] do not compare BC's miss 
rate and trace length with other cache schemes. The block diagram of Fig. 2 shows a 
superscalar processor connected to BC. A scheme similar to BC was proposed in a paper 
by Jourdan, et al [ 10]. Their scheme called extended block (XB) cache stores the 
instructions (uops) in reverse sequence, which gives them the ability to extend any 
existing XB’s. The authors report reduced block fragmentation but XB bandwidth is only 
marginally better than TC [ 10]. (Due to this minor improvement over TC and 
significantly complex implementation logic, we will limit our discussion on XB to this 
section only, and will not use XB for modeling in this paper). Unlike TC, no follow-up 
research has been reported on either BC or XB, since their introductions.   
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Fig. 2. A superscalar processor with a block cache (BC) 

2.5.   Variable-Sized Block Cache  

VSBC was introduced in [ 4] and addressed some of the short-comings of TC and BC. 
Block diagram of VSBC when connected to a superscalar processor is shown in Fig. 3. 
Unlike TC, the basic blocks that may appear in multiple traces are stored only once. The 
basic blocks are stored in basic block cache (BBC) and the starting and ending addresses 
of the basic blocks are stored in a separate structure called block pointer cache (BPC). 
Each line in BPC represents a single trace by storing multiple sets of basic block (start 
and end) addresses. Unlike BC, storage and retrieval of block sizes of varying lengths are 
allowed. Combined effects of variability of block sizes and set-associativity in BBC 
manifest in lower trace miss rate than TC and BC; VSBC’s average number of 
instructions stored per trace is also higher than both TC and BC. Cache storage in VSBC 
is more efficient than BC because the latter replicates cache structures. TC uses only the 
beginning address of a trace for matching. Blocks other than the beginning block are not 
identifiable, so even if the required instructions are present in the trace, the trace is 
declared a ‘miss’ and a new trace build is initiated. VSBC avoids this unnecessary 
switching from trace utilization mode to build mode, by allowing hits even on intra-trace 
blocks; this helps improve trace miss rate.  

 

 
Fig. 3. A superscalar processor with variable-sized block cache (VSBC) 
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2.6.   Neural Networks 

Neural networks (NN’s) mimic the ability of a human brain to find patterns and uncover 
hidden relationships in data. NN’s can be more effective than statistical techniques for 
organizing data and predicting results, and can be quite efficient in modeling non-linear 
systems [ 12][ 13][ 14].    
A neural network (NN) is defined as a computational system comprising of simple but 
highly interconnected processing elements (PE’s) (or 'neurons') (Fig. 4 and Fig. 5) [ 15]. 
PE’s are neural network equivalents of biological neurons. Unlike conventional 
computers that process instruction and data stored in the memory in a sequential manner, 
the NN’s produce outputs based on a weighted sum of all inputs in a parallel fashion [ 12].  

 

 
 

Fig. 4. Processing element (PE), the building block of a neural network. The inputs (i(0)..i(n-1)) are scaled 
(multiplied) with weights (w(0)..w(n-1)) and summed up before being passed through a (linear or non-linear) 
activation function. 

 

 
Fig. 5. Topology of a simple 3-layer feed-forward neural network. The NN has 4 inputs (i(0)..(i(3)) feeding 
into 4 input neurons (PE(i,0)..PE(i,3)) and 2 outputs (y(0)..y(1)) driven by (PE(o,0)..PE(o,1)). There is a 
single hidden layer composed of 5 neurons (PE(h,0)..PE(h,4)).   

  
NN’s use different types of learning (or training) mechanisms, the most common of them 
being supervised learning. In this method of learning, a set of inputs is provided to the 
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NN and its output is compared with the desired output. The difference of actual and 
desired outputs is used to adjust the connection weights to different PE’s in the network. 
The process of adjusting weights is repeated until the output falls within an acceptable 
range [ 12].  
For effective NN training, the data may need to be transformed (by reformatting and/or 
scaling). Also, the data is divided into training and validation sets. An NN is trained only 
with the training set whereas validation set is used to verify that the NN produces 
desirable outputs with 'unseen' inputs. If the validation phase produces large deviations, 
the training set or the network structure needs to be re-examined; re-training is required 
in this case [ 12].  

2.7.   Neural Network Applications in the Realm of Computer Architecture  

When compared with actual implementation or simulation, the models are usually faster 
for studying the design or operation of a system [ 16]. As stated earlier, NNM’s are made 
up of a set of weights that are applied to the model inputs to calculate the outputs. While 
being robust, NNM’s can also be good alternatives to (1) analytical models and (2) 
lookup methods that require storage of all data points in given data space [ 17].  
Several applications of NNM's to application to the field of computer architecture have 
been reported in the past years. A few examples of such research are given below.  
Khalid [ 18][ 19] presented an NNM-based cache replacement scheme that performed 
better than LRU scheme in case a program has more spatial locality than temporal 
locality. His research reportedly would save chip area by using a single level of cache 
instead of multiple levels.  
Calder, et al [ 20] used a NN to make static branch predictions. Their technique involved 
using a collection of programs to model the behavior of branches in a new program. They 
used NN's and decision trees to extract the static properties of different branches in order 
to predict a branch. Their NNM eliminated the need for rule-based branch prediction 
mechanisms. Calder, et al [ 20] also reported that their branch prediction technique 
resulted in 20% miss rate vs. 25% miss rate of then-available heuristics-based methods.  
Jimenez and Lin [ 21] came up with a NNM for branch prediction. The size of their NN-
based branch predictor increases linearly as compared to a conventional branch predictor 
whose hardware enlarges exponentially when the branch histories are extended. Their 
global and global-and-local branch predictors not only showed reduced miss rates but 
also resulted in better IPC (instructions per cycle) than traditional (two-bit, McFarling 
hybrid) branch predictors.    
Gomez et al [ 22] proposed a NN method for administering the resources in chip multi-
processors. Their technique of dynamically assigning the L2 cache banks to a set of 
processor cores resulted in noticeably better performance than static partitioning method.  
Although many analytical models for conventional caches [ 24][ 25][ 26][ 27][ 28] have 
been proposed, no research so far seems to have covered the subject of an integrated 
mathematical or NN modeling of trace- and block-caches. So we consider our research to 
be the first attempt in this direction. In our paper, the primary reason for using NNM's for 
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cache modeling is the ease and effectiveness of NN’s in modeling the non-linear and 
multi-variate systems.  

3.   The Neural Network Model for Trace and Block Caches  

3.1.   Cache Performance Criteria 

In order to compare the performance of TC, BC, and VSBC, two metrics, namely, trace 
miss rate and average trace length were used in [ 4]; these metrics were considered to be 
among the most appropriate in the context of trace- and block-based caches. The same 
two metrics were used in constructing our NNM's. Trace miss rate is the percentage of 
references when a requested trace was not found in the cache. Smaller value of trace miss 
rate represents a lower average latency for cache data fetching. The larger the average 
trace length, the more the number of instructions fetch-able per cycle.  

3.2.   Data collection 

For the NNM’s in this paper, the training and validation sets were obtained by running 
different configurations of trace-driven cache simulators: Sim-TC for TC, Sim-BC for 
BC, and Sim-VSBC for VSBC [ 4]. (Note that our work in [ 4] was limited to simulations; 
the modeling efforts are only being presented this paper). Each simulator ran ten 
SPECint2000 benchmark programs [ 29] (Table 1) on all the cache configurations listed in 
Table 2. For each of these simulations, we acquired two values: (1) trace miss rate, and 
(2) average trace length. We used the basic block counts and sizes (Fig. 6) as the 
parameters that would represent a benchmark; the basic block statistics were gathered 
using SimpleScalar tool [ 30][ 31]. 

Table 1. Benchmarks Used for TC, BC, and VSBC Simulations 
Benchmark Description Input Data Set 
  bzip Compression  input.random 
  crafty Game playing: chess  crafty.in 
  gap Group theory, interpreter  test.in 
  gcc C language compiler  cccp.i 
  gzip Compression  input.compressed 
  mcf Combinatorial optimization  inp.in 
  parser Word processing  test.in 
  perlbmk PERL language  test.pl, test.in 
  vortex Object-oriented database  lendian.raw 
  vpr FPGA placement & routing  net.in, arch.in  
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Table 2. Simulation Parameters for TC, BC, and VSBC 

Parameter TC BC VSBC 
Max number of traces  
 

64, 128, 256, 
512, 1024, 
2048 

64, 128, 256, 
512, 1024, 
2048 
(lines in trace 
table) 

64, 128, 256, 
512, 1024, 
2048 
(NBPC) 

Number of ways in 
TC/BPC 

1 1 1 

Cache capacity (KB) 1, 2, 4, 8, 16, 
32, 64, 128, 
256 

1, 2, 4, 8, 16, 
32, 64, 128, 
256  
(block cache) 

1, 2, 4, 8, 16, 
32, 64, 128, 
256  
(BBC) 

TC/BBC associativity 
(ways)  

1, 2, 4, 8, 16 1, 2, 4, 8, 16 
(block cache) 

1, 2, 4, 8, 16 
(WBBC) 

Max basic blocks per 
trace 

4 4 4 

Max possible number 
of instructions per trace 

16 16 Not limited 

Entries in branch 
history table 

1024 1024 1024 
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Fig. 6. Block length distribution of different SPECint2000 benchmarks; runs were limited to 100m 
instructions.  

3.3.   Neural Network Model Definition  

The NNM’s in this paper predict (output) trace miss rate and average trace length for TC, 
BC, and VSBC. Inputs to the NNM’s are cache configuration and program characteristics 
(block counts) as shown in Table 3. Note that cache type is a symbol, rather than a value, 
so 3 discrete inputs #4, 5, and 6 are used to represent the cache types [ 12]: TC = {1, 0, 
0}; BC = {0, 1, 0}; VSBC = {0, 0, 1}.   
Our initial attempts at NN modeling used a single value for the average block size (for 
the complete run). But, we discovered that the block size averages among the 
benchmarks were not distinct enough to properly represent the benchmarks for the 
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purposes of NN-training. So, for each benchmark, we used more than one value of block 
count as shown in Fig. 6. Two of the several NNM configurations, we experimented with, 
are shown in Table 3. We chose Configuration 2 for the final NNM’s due to their better 
training performance.  

Table 3. NNM Configurations - Input and output neuron definitions. The difference between the two 
configurations is the representation of a program using block counts, i.e., inputs # 7, 8, 9, and 10.  

Input/ 
Output  
Neurons Configuration 1 Configuration 2 
Output Trace miss rate/average trace length Trace miss rate/average trace length 
Input 1 Traces in TC -or- Lines in BC's Trace 

Table -or- Lines in VSBC's BPC (NBPC) 
Traces in TC -or- Lines in BC's Trace Table -
or- Lines in VSBC's BPC (NBPC) 

Input 2 Cache capacity (KB): TC size -or- Block 
cache capacity in BC -or- BBC size in 
VSBC 

Cache capacity (KB): TC size -or- Block 
cache capacity in BC -or- BBC size in VSBC 

Input 3 TC ways -or- Block cache ways in BC -
or- BBC ways in VSBC (WBBC) 

TC ways -or- Block cache ways in BC -or- 
BBC ways in VSBC (WBBC) 

Input 4 Cache type is TC Cache type is TC 
Input 5 Cache type is BC Cache type is BC 
Input 6 Cache type is VSBC Cache type is VSBC 
Input 7 % of blocks with 1 to 4 instructions % of blocks with 1 to 4 instructions 
Input 8 % of blocks with 5 or more instructions % of blocks with 5 to 8 instructions 
Input 9  % of blocks with 9 to 12 instructions 
Input 10  % of blocks with 13 or more instructions 

 

3.4.   Data Pre-Processing 

Pre-processing the training and validations sets can take a considerable amount of 
resources for a practical and reliably functioning NNM [ 14][ 32]. In our research, the first 
data pre-processing step was to apply Z-score, a statistical technique of specifying the 
degree of deviation of a data value from the mean. Z-score is calculated by this formula 
[ 33][ 34]: 

 
σ

)( xxZ −
=  (1) 

where x is the individual value, x is the sample mean, and σ is the sample standard 
deviation.   
As a 2nd step of pre-processing, we normalized the training set to the range [0, 1]; 
normalization was done to ensure equitable distribution of importance among inputs. In 
other words, the larger absolute values of an input should not have more influence than 
the inputs with smaller magnitudes [ 35]. Similarly, we also normalized the outputs to the 
[0, 1] range [ 36]. For n samples, the [0, 1] normalization was a 2-step process:  
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 1-n .. 0  i    ,
min

' =−= x
i

x
i

x         (2) 

 

 1-n .. 0  i    ,
max
'/''' == x

i
x

i
x  (3) 

For the cache-size input values that are multiplicative in nature (i.e., 1K, 2K, 4K …), we 
used log2 transformation prior to normalization of equations 2 and 3 [ 35].    

3.5.   Neural Network Training Results and Analysis 

We used an NN-modeling software package called Brain Maker (version 3.75 based on 
MS-Windows) [ 37] to create and test our NNM’s. Brain Maker’s back-propagation NN’s 
were fully connected, meaning all inputs were connected to all hidden neurons, and all 
hidden neurons were connected to the outputs. The activation function for the hidden and 
output layers was a sigmoid function.  
We acquired a total of 150 data sets (also called facts/training facts) during our 
simulations of TC, BC, and VSBC. (Simulation details have been explained in Section 
3.2.) 120 data sets were used for training set, while the remaining 30 were used for 
validation. We stopped an NN training session, when the sooner of these two conditions 
was met:  
• Epoch count reached 30000. Rationale: Most of our properly NNM's converging so 

much before this count. 
• 90% of the facts were learnt with less than 10% mean squared error (MSE). 

Rationale: 90% fact limit keeps NNM topology small and achieve generalizations 
instead of 'rote' learning [ 13]. The allowance of 10% MSE is comparable to other 
cache models2.  

A general rule is that as the number of hidden layers increases, the prediction 
performance goes up, but only up to a certain point, after which the NNM performance 
starts to deteriorate [ 32]. To find the optimum topologies for our NNM’s, we 
experimented with up to 3 hidden layers; each layer consisted a different number of 
neurons. Brain Maker assigns random values to all the weights at the beginning of every 
training session [ 37]. Details of some of our NNM’s experiments are listed in Table 4 
(trace miss rate) and Table 5 (average trace length). The miss rate NNM was able to learn 
91% of the facts and the average trace length NNM learnt 82% of the facts. (Both NNM's 
were allowed a maximum of 10% MSE). Similarity in the values of block sizes in the 
training set seems to be the reason for difficulty in training the average trace length NNM 
with any higher accuracy.  

 
2 (1) 15% error in Harper, et al's [ 38] cache analytical model for miss ratio predictions, (2) 7% error in 
Hossain’s [ 6] TC mathematical model for instruction fetch rate. (4) 14% error in Hossain, et al's [ 5] TC model 
for average trace length, and (5) up to 37% error in Agarwal, et al's [ 23] mathematical model for cache misses.  

ACCEPTED:
A. Beg and Y. Chu, "Modeling of Trace- and Block-Based Caches," 
Journal of Circuits, Systems and Computers (JCSC), vol. 16, August 2007.



 Modeling of Trace- and Block-Based Caches     11 
 

Table 4. Training performance of the trace miss rate NNM. Optimum results 
were achieved with a 4-Layer (10-5-5-1) NNM (shown in bold)* 

NNM Size (Number of neurons) 
Stop training 
when 

Input 
layer 

Hidden 
Layer 1 

Hidden 
layer 2 

Hidden 
Layer 3 Output Epochs 

Learnt 
90%+ 
facts 

Training
Accuracy 

10 10 - - 1 30000 no 71% 

10 20 - - 1 30000 no 69% 

10 10 5 - 1 14500 yes 91% 

10 7 5 - 1 30000 no 71% 

10 5 5 - 1 16471 yes 91% 

10 10 10 - 1 2900 yes 91% 

10 15 10 - 1 5167 yes 91% 

10 10 10 5 1 3008 Yes 91% 
* Brain Maker training parameters: Training tolerance = 0.1; testing tolerance 
= 0.1; learning rate (initial value) = 0.1; learning rate adjustment type = 
exponential. (See [ 37] for details).  

 

Table 5. Training performance of the average trace length NNM. Optimum 
results were achieved with a 4-Layer (10-15-10-1) NNM (shown in bold)* 

NNM Size (Number of Neurons) 
Stop Training 
When 

Input 
layer 

Hidden 
Layer 1 

Hidden 
layer 2 

Hidden 
Layer 3 Output Epochs 

Learnt 
90%+ 
facts 

Training
Accuracy 

10 10 - - 1 30000 no 78% 

10 20 - - 1 30000 no 35% 

10 10 5 - 1 30000 no 68% 

10 7 5 - 1 30000 no 37% 

10 5 5 - 1 30000 no 37% 

10 10 10 - 1 30000 no 76% 

10 15 10 - 1 30000 no 82% 

10 10 10 5 1 30000 no 62% 
  * Brain Maker training parameters: Training tolerance = 0.1; testing 
tolerance = 0.1; learning rate (initial value) = 0.1; learning rate adjustment 
type = exponential. (See [ 37] for details).  

 
Fig. 7 shows the comparison of simulated ('actual') and NNM's predicted values for 
VSBC trace miss rates. Fig. 8 compares the simulations and predictions for average trace 
lengths. As to the horizontal axis labels, in these figures, 'bzip_512' refers to trace miss 
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rate/average trace length of 'bzip' benchmark when NBBC = 512 lines, and so on. We 
measured the simulation-prediction average error to be 10.9% for miss rate and 13.5% for 
average trace length. These errors are within the ranges of other cache models. (See 
footnote on page 10.)  
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Fig. 7. Effect of changing VSBC's NBBC on trace miss rate. NBBC = {512, 1024, 2048}, WBBC = 1, NBPC = 
256. Horizontal axis shows benchmark name and NBBC and vertical axis shows the miss rates.  
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Fig. 8. Effect of changing VSBC's NBBC on average trace length. NBBC = {512, 1024, 2048}, WBBC = 1, 
NBPC = 256. Horizontal axis shows the benchmark name and NBBC and vertical axis shows the average trace 
length.  

3.6.   Using the Neural Network Models  

In this section, we show a few examples of the insight one can gain by using the NNM's. 
We arbitrarily picked a set of values of the block sizes to examine VSBC's behavior: 
{0.80, 0.17, 0.03, 0.02} which means that 80% of blocks contained 1 to 4 instructions, 
17% blocks contained 5 to 8 instructions, 3% blocks contained 9 to 12 instructions, and 
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2% blocks contained 13 or more instructions. Note that these block sizes were different 
from any of the benchmarks’ block sizes used to train or validate the NNM's.    
As expected, the results in Fig. 9 show us that increase in BPC size reduces the miss rate. 
The average trace lengths, however, vary slightly but do not show a trend (Fig. 10). 
Currently, even a single block hit (partial hit) is considered a trace hit. Changing the 
definition of partial hits to two or more blocks may result in higher averages of trace 
lengths; although this redefinition of partial hits may reduce the trace miss rate.  
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Fig. 9. Effect of varying VSBC cache (BPC) size  on 
miss rate: A drop in miss rate happens with increase 
in BPC capacity.  
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Fig. 10. Effect of varying VSBC cache (BPC) size 
on average trace length. The average trace length 
vary but do not show a trend.  

We see that increasing BBC associativity from 1 to 2 has the largest miss rate 
improvement, but the gains flattens out with associativities of 4 and higher (Fig. 11); the 
trend resembles the familiar cache-associativity behavior. The trace lengths do not vary 
much but peak out with a 4-way BBC (Fig. 12). The reason for little change in trace 
lengths may be that the storage of a basic block is restricted to a single BBC-way, so the 
higher associativity does not change appreciably the average trace length. 
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Fig. 11. Effect of varying VSBC-BBC associativity 
on miss rate. After an initial drop in miss rate, it 
flattens out with increase in associativity.  
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Fig. 12. Effect of varying VSBC-BBC associativity. 
The trace lengths vary slightly with change in BBC-
associativity.  

 
Additionally, we used the NNM's to compare the performance of different configurations 
of TC, BC, and VSBC. Here we use the same input program as the previous examples, 
i.e., with the block percentages of {0.80, 0.17, 0.03, 0.02}. The predicted values of trace 
miss rate and average trace lengths are shown in Fig. 13 and Fig. 14. We observe that 
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miss rates improve as cache size increases, but the improvement rate tends to flatten out 
after 8K cache size. VSBC offers better miss rates than TC and BC for all cache sizes. 
Trace lengths for a given cache scheme remain relatively stable, while VSBC maintains 
its lead over both TC and BC.  
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Fig. 13. For a program with arbitrarily chosen ‘block size distribution’ of {0.80, 0.17, 0.03, 0.02}, miss-rate 
NNM was used to predict the values for TC, BC, and VSBC. The horizontal axis shows cache size and the 
vertical axis represents miss rate percentages.  
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Fig. 14. For a program with arbitrary chosen ‘block size distribution’ of {0.80, 0.17, 0.03, 0.02}, trace-
length NNM was used to predict the values for TC, BC, and VSBC. The horizontal axis shows cache size 
and the vertical axis represents the trace length in terms of number of instructions. 

3.7.   Neural Network Model Speed 

As anticipated, running the NNM's takes much less time than the trace-driven 
simulations. These time comparisons are given in Table 6. The NNM's generate 
predictions in an average of 0.07 second whereas the average simulation times are 35342 
seconds. Simulation times range from 13830 seconds (row 1) to 61464 seconds (row 2). 
(A Windows-XP based, 2.4 GHz Pentium-4 machine has been used in these 
experiments).  
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Table 6. Comparison of simulation time and NNM running times. The 
NNM generate prediction in an average of 0.07 second whereas the 
average simulation times are 35342 seconds. Minimum simulation time 
is 13830 seconds (row 1) and the maximum is 61464 seconds (row 2).  

NBPC NBBC WBBC 

Simulation 
Time 
(seconds) 

NNM 
Running  
Time 
(seconds) 

64 512 1 13830 0.07 
512 2048 4 61464 0.07 

  

4.   Conclusions & Further Research 

In this paper, we presented a new and unified model for trace- or block-based traces using 
NNM’s. Until the time of this writing, no such models have been reported by other 
researchers. Although relatively interpolative in nature, once the NNM’s have been 
developed, they can be used to conduct further experiments with different types of inputs, 
in a fraction of the time what a simulator would take (i.e., 0.07 second vs. 35242 
seconds.) Our miss rate NNM makes predictions with 10.9% accuracy and average trace 
length NNM produces outputs with 13.5% accuracy. We also looked at some examples of 
NNM usage with some arbitrary input values that were 'shown' to the NNM neither 
during training nor validation.  
Two potential applications of this paper's NNM's (which are a subject of a future study) 
are given below: 
• Time-efficient estimation of how the performance of different cache configurations 

relates to the compiler optimization techniques that affect the block sizes, such as 
branch elimination, conversion of control dependence into data dependence, etc.  

• Quick demonstration, especially for pedagogical purposes, of the effect of code 
block sizing on the performance of different caches.  

Two other ideas for extending this paper's research are: 
• The training set for cache NNM’s could be expanded to include a wider range of 

input parameters, such as number of threads (in a multi-threading environment), 
floating-point benchmarks, etc.   

• If the NNM training data were obtained from full-processor simulations instead of 
just the caches, the NNM's could provide insight into processor specific parameters 
such as cycles per instruction (CPI), execution time, etc.  
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