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Abstract 

This paper describes a neural network approach that gives an estimation method for 
the space complexity of Binary Decision Diagrams (BDDs). A model has been 
developed to predict the complexity of digital circuits. The formal core of the 
developed neural network model (NNM) is a unique matrix for the complexity 
estimation over a set of BDDs derived from Boolean logic expressions with a given 
number of variables and Sum of Products (SOP) terms. Experimental results show 
good correlation between the theoretical results and those predicted by the NNM, 
which will give insights to the complexity of Very Large Scale Integration 
(VLSI)/Computer Aided Design (CAD) designs. The proposed model is capable of 
predicting the maximum BDD complexity (MaxBC) and the number of product terms 
(NPT) in the Boolean function that corresponds to the minimum BDD complexity 
(MinBC). This model provides an alternative way to predict the complexity of digital 
VLSI circuits. 
 
Keywords: Binary Decision Diagrams, Neural Network, Complexity estimation, 
BDD complexity 
 
1. Introduction 

Logic level simulation is still one of the most often used operations in digital 
systems during both design and test stages [1]. With the rapid increase of the amount 
of circuitries on a single chip, there is a need for greater optimization and efficiency in 
the design process [2]. According to Moore’s law [3] the number of transistors on a 
single chip doubles every year, and it has withstood the test of time since Gordon 
Moore made this observation in 1965. Boolean function representation has a direct 
influence on the computation time and space requirements of digital circuits and most 
of the problems in VLSI/CAD designs can be formulated in terms of Boolean 
functions. The efficiency of any method used depends on the complexity of Boolean 
functions [4]. Research on the complexity of Boolean functions in non-uniform 
computation models is now part of one of the most interesting and important areas in 
theoretical computer science [4], [5], [6]. Mathematicians and computer scientists 
kept trying to classify Boolean functions according to various complexity measures, 
such as the minimal size of circuits needed to compute specific functions [7].  
 During the last two decades, BDDs have gained great popularity as efficient 
method for representing Boolean functions [8], [9]. BDD in general is a direct acyclic 
graph representation of Boolean functions proposed by Akers [8] and further 
generalized by Bryant [9]. In many applications, the efficiency of BDD 
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representations is determined by the size of the BDD defined as the number of nodes 
in the BDD for a given Boolean function f .  
  BDDs can be represented by algorithms that travel through all the nodes and 
edges of the directed graph in some order and therefore take polynomial time in the 
current size of the graph. However, when new BDDs are created, it might 
significantly increase the number of nodes in the BDD, depending on the node 
placement in the graph, which can lead to exponential memory and run time 
requirements [9] The choice of BDD variable order has a direct impact on the size of 
the BDD, and determining an optimal variable ordering is an NP-hard problem [10]. 
In general, it is hard to predict the effect of variable ordering on the BDD size, this 
requiring the trial of all possible ordering methods. It is also hard to find the best 
order for a given Boolean function. However, there are some observations that help in 
finding a good variable ordering. 

The width of the BDD is defined as the maximum number of nodes at a certain 
level, where the level consist of nodes to which the same variable is assigned. The 
success of this technique has attracted researchers in the area of VLSI CAD systems 
[11], [12] and BDDs became very popular data structures. Evaluation of the space 
complexity of Boolean functions can be performed by determining the area of the 
BDD. Since the number of nodes in the BDD represents the space required for the 
function represented by the BDD, a function that produces higher number of nodes 
has higher space complexity than a function that produces lesser number of nodes. 
Building the complete BDD will increase the time complexity in the design process, 
more time is needed to implement, verify and test the design. Modeling is considered 
to be a time-efficient alternative to actual simulations and prototyping especially for 
non-linear and multi-variable systems. Predicting complexity of Boolean functions 
that represent a digital circuit could be a good indication to its feasibility prior to 
engaging in any further development and implementation. There have been a lot of 
research works [13], [14], [15] done on the estimation of combinational and 
sequential circuit parameters from the exact Boolean function describing the circuit. A 
mathematical model to predict the complexity of Boolean functions, XOR/XNOR 
min-terms and the path length of BDDs using empirical fit were introduced in papers 
[16], [17], [18], [19], [20], and here we propose an alternative way to tackle this 
problem using neural networks (NNs). 
 NNs have been showing amazing usefulness in the area of pattern recognition and 
prediction applications. Apart from this lot of research works has been done on the 
computational properties of neural networks [21], [22]. The measure of efficiency of 
the circuit have been addressed in relation with the area of circuit implementation 
[21],[23], where the complexity of Boolean functions is analyzed in terms of their 
implementation using different kind of circuits, from those with simple SOP, to feed 
forward neural network with threshold functions. In solving these problems the 
important contribution of the neural networks is their capacity for learning from 
experience. The main objective of this paper is to introduce a BDD complexity 
estimation methodology based on NNs. The resulting model will enable the design 
feasibility and performance to be analyzed without building the BDD. This model has 
produced competitive results against the mathematical prediction of the BDD 
complexity. In the second section, we provide background information pertaining to 
the BDD and NNs. Section three reviews the previous works done by the same 
authors on the estimation of BDD complexity. The proposed NNM for the estimation 
of BDD complexity is explained in the fourth, fifth and sixth sections. Section seven 
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explains the NNM for the estimation of the MaxBC and the NPT of MinBC, follows 
with BDD Complexity comparison of NNM and Mathematical models for ISCAS 
Benchmark circuits in section eight. . Finally, we conclude our paper with our future 
developments in this research work. 
 
2. Preliminaries 
2.1 Binary Decision Diagram (BDD) 

Basic definitions for binary decision diagrams are detailed in [5], [8], [9], [11]. 
The following is a summary of some of these definitions. 

 
Definition 1: A BDD is a directed acyclic graph (DAG). The graph has two sink nodes 
labeled 0 and 1, representing the Boolean functions 0 and 1. Each non-sink node is 
labeled with a Boolean variable v, and has two out-edges labeled 1 (or then) and 0 (or 
else). Each non-sink node represents the Boolean function corresponding to its 1 edge 
if v=1, or the Boolean function corresponding to its 0 edge if v=0. 
 
Definition 2: An Ordered Binary Decision Diagram (OBDD) is a BDD in which each 
variable is encountered no more than once in any path and always in the same order 
along each path. 
 
Definition 3: A Reduced Ordered Binary Decision Diagram (ROBDD) is an OBDD 
where each node represents a distinct logic function. It has the following two 
properties: 

(i) There are no redundant nodes in which both of the two edges leaving the node 
point to the same next node are present within the graph. If such a node exists, it 
is removed and the incoming edges redirected to the following node. 

(ii) If two nodes point to two identical sub-graphs (i.e. isomorphic sub-graphs), then 
one sub−graph will be removed and the remaining one will be shared by the two 
nodes. 

 
Variable Ordering 
      The size of a BDD is largely affected by the choice of the variable ordering [9], 
[11]. This is illustrated by the following example: 
 
Example: Let nn xxxxf 21221 ..... ⋅++⋅= − . If the variable ordering is given 
by ),......,,( 21 nxxx , i.e. iixi ∀=)(π , the size of the resulting BDD is n2 . The number of 
nodes in the graph varies linearly or exponentially depending on variable ordering. 
Fig. 1 shows the effect of variable ordering on the size of BDDs for the Boolean 
expression (1):  
 431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅=    (1) 
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 (a) 4321 xxxx                    (b) 4231 xxxx  

Figure 1 Effect of variable ordering on the size of BDDs, in term of number of nodes 

 

2.2 Neural Networks (NNs) 
NN mimic the ability of a human brain to find patterns and uncover hidden 

relationships in data. NNs can be more effective than statistical techniques for 
organizing data and predicting results, and are very efficient in modeling non-linear 
systems [24], [25], [26]. A NN is defined as a computational system comprising of 
simple but highly interconnected processing elements (PEs) ( or neurons) ( Figure 2) 
[27]. PEs are NN equivalents of biological neurons. Similarly, neural network 
interconnections are equivalents of synapses that connect a neuron to others. 
Information is processed by the PE’s by dynamically responding to their inputs. 
Unlike conventional computers that process instruction and data stored in the memory 
in a sequential manner, the NNs produce outputs based on a weighted sum of all 
inputs in a parallel fashion. 
 

 
 
Figure 2. Processing element (PE) – building block of a neural network 
 
      In Figure 1 the inputs (i(0)..i(n-1)) to a PE are scaled with weights (w(0) .. w(n-1)) 
and summed up before being passed through an activation function. The activation 
function determines whether a PE activates (fires) or not. A sigmoid (non-linear) 
activation function has an s-shaped output between the limits [0, 1]. The function (2) 
is defined as [28]:          
 

)e(1
1 y x-+

=                                             (2) 
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Each input of an NN corresponds to a single attribute of the system being modeled. 
The output of the NN is the prediction we are trying to make.  
 

 
Figure 3. Topology of a simple 5-layer feed-forward neural network. The first is a 2-input layer 
followed by 3 hidden layers. A single output neuron makes the last layer.  
 
 Figure 3 shows the topology of a simple 5-layer feed-forward NN with 2 inputs 
and one output. The NN has 2 input neurons (PE(ip1), PE(ip2)), three hidden layers 
with 5 neurons each (PE(hnm) is the mth neuron in nth hidden layer), and one neuron 
in the output layer (PE(op1)) [24]. The NNM is fully-connected, meaning; all neurons 
in one layer connect to all neurons in the next layer.   
      NNs use different types of learning (or training) mechanisms, the most common 
of them being supervised learning. In this method of learning, a set of inputs is 
provided to the NN and its output is compared with the desired output. The difference 
between the actual and the desired outputs is used to adjust the weights (Figure 1) to 
different PEs in the network. The process of adjusting weights is repeated until the 
output falls within an acceptable range. To ensure a robust NN design, the set of input 
data and corresponding output data has to be chosen carefully. The input-output data 
set for an NN is called a training set. Additionally, special attention has to be paid to 
the formatting and scaling of the data for effective NN training [24]. The available 
data is divided into training and validation sets. An NN is only trained with the 
training set. Validation set is run on the NN to verify that the inputs are producing 
desirable outputs. If the validation phase produces large deviations, the training set or 
the network structure needs to be re-examined; re-training is required in this case [24]. 
 

3. Previous work 
In this section we will briefly describe about background concept and results 

achieved in the area of the estimation of BDD complexity prior to introducing our 
NNM. 
 
3.1 Relation between the Size of a Boolean function and the BDD Complexity  
      The complexity of the ROBDD mainly depends on the number of nodes 
represented by the BDD. An experiment was done in [16], [17] to analyze the 
complexity variation in BDDs i.e. the relation between the number of product terms 
and the number of nodes for any number of variables. The experimental and equation 
graph (Figure 4) shows that the complexity of the BDD can be modeled 
mathematically by (3).  
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1)( +⋅⋅= ⋅− γβα NPTeNPTNN                        (3) 
 

where, NN is the number of nodes that represents the complexity of the BDD, 
NPT is the number of non-repeating product terms in the Boolean function,α ,β  and 
γ  are three constants. Using curve fitting techniques, the variations ofα, β and γ were 
mathematically modeled and represented by the following equations (4), (5) and (6). 

)063.0( 51.1
9855.0 NVe ⋅⋅=α                                  (4) 

)2985.1()01551933.0( 2072.67031149.1 NVNV ee ⋅−⋅− ⋅+⋅=β    (5) 
)5072.1()4187691.0( 9723.41962297281.0 NVNV ee ⋅−⋅− ⋅+⋅=γ       (6) 

 
Where, NV is the Number of Variables.  
 

 
Figure 4. Simulation vs. mathematically predicted BDD complexity for 11 variables 
 
 
4. Analysis of Boolean Function Complexity  

For each variable count n between 1 and 14 inclusive and for each term count 
between 1 and 2n-1, 100 SOP terms were randomly generated and the Colorado 
University Decision Diagram (CUDD) package [29] was used to determine the BDD 
complexity. This process was repeated until the BDD complexities (i.e. number of 
nodes) became 1. Then the experimental graphs for BDD complexity (Example: for 
10 variables, as shown in Figure 5) were plotted against the product term count for 
each number of variables.  
 



To be published as:  
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural 
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007. 
_________________________________________________________________ 

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251 301 351 401 451 501 551 601

Number of Product terms

B
D

D
 C

om
pl

ex
ity Simulation using

CUDD

 
 
Figure 5. Simulation results for Boolean complexity for 10 variables 

The above graphs indicate that the BDD complexity in general increases as the 
number of product terms increases. This is clear from the rising edge of the curve. At 
the end of the rising edge in the graph reaches a maximum complexity. This peak 
indicates the maximum BDD complexity (134) that any Boolean function with 10 
variables can have independently of the number of product terms. Apart from that the 
peak also specifies the number of product terms (critical limit) of a Boolean function 
that leads to the MaxBC for any Boolean function with 10 variables. 
 The number of product terms that leads to the maximum for 10 variables is 54. If 
the number of product terms increases above the critical limit, as expected, the 
product terms starts to simplify and the BDD complexity will reduce. The BDD 
Complexity graph shown in Figure 5 indicates that as the number of product terms 
increases the complexity of the BDD decreases at a slower rate and ultimately reaches 
1 node. 
 
5. Neural Network Modeling Methodology 

We have used here an NN-modeling software package called Brain Maker ( Ver. 
3.75 for MS Windows) [30] to create and test our NNMs. Brain Maker’s back-
propagation NNs were fully connected, meaning all inputs were connected to all 
hidden neurons, and all hidden neurons were connected to the outputs. The activation 
function for the hidden and output layer was a sigmoid function. The difference 
between the network’s actual output and the desired output was treated as the error to 
be minimized. We stopped the NN training sessions, when the earliest of these 
conditions were met [30]. 

a) 98% of the facts were learnt with less than 5% mean squared error or   
b) When training iterations count (epochs) reached 10000 

 
For the sake of training ease, we chose to develop two separate models, one for 

predicting the BDD complexity and the other for predicting the MaxBC and the NPT 
for MinBC for a given number of variables. 
 
 
6. Application of Neural Network to BDD Complexity Modeling 
       This section covers the definition and implementation of the Neural Network 
Model (NNM) for modeling the BDD complexity (Figure 6). 
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Figure 6. NNM for BDD complexity. The NNM has two inputs (number of variables, and number of 
min-terms) and one output (BDD complexity). 
 
6.1 Data Collection and Processing 

For the NNMs in this paper, the training and validation data sets were obtained by 
the experiment done in section 3.1. Pre-processing the training and validations sets 
takes a considerable amount of resources for a practical and reliably functioning 
NNM [26], [30]. In our research, the first data pre-processing step was to transform 
the data set in such a way that inputs have equitable distribution of importance. In 
other words, the larger absolute values of an input should not have more influence 
than the inputs with smaller magnitudes [31]. The need of such equitable distribution 
can be explained with the set of figures shown below. Figure 7 shows the raw 
(original) data for 2 to 14 variables. Notice that the plots for 2- to 9-variables are 
hardly visible when all variables are plotted on the same scale. If the data were 
presented to the NN for training in this case, only 10- to 14- variable cases could be 
learnt by the NN and 2- to 9-variables values could be ignored. So in order to provide 
similar importance to all variable values (2 to 14), we did a logarithmic 
transformation of the product terms (min-terms) and complexity (number of nodes) 
inputs. The resulting data is plotted in Figure 8. As we can see now all different plots 
(from 2 to 14 variables) are in similar ranges and make it easier for NN to learn them. 
 
6.2 Training and Testing of NNM for BDD Complexity 
      In order to ‘use’ or ‘run’ a trained NN, de-normalization and de-transformation has 
to be done to restore the predicted outputs to the original ranges. Steps employed in 
'training' and 'running' the networks are summarized here:  
 
6.2.1 Steps for Training the NNM:  
a) Take logarithm of actual values of the inputs and output  
b) Train the NN with values from step (a) 
 
6.2.2 Steps for Using/Running the NNM:  
a) Take logarithm of the actual values of the input 
b) Present the values from step (a) to the NNM 
c) Apply anti-logarithm to the output of the NNM to get the actual result   
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Figure 7. Raw (untransformed) data. Notice that the smaller variable (2, 3, etc.) curves are not as visible 
as the larger values.   
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Figure 8. Log-scaled (transformed) data. All curves are now on a similar scaled which improves the 
NNM prediction accuracy.   
 

We acquired a total of 19044 data sets (also called facts/training facts) during our 
simulations of Boolean Functions. 90% of the data sets (facts) were used as the 
training set, while the remaining 10% were used as the validation set. We stopped the 
NN training sessions, when 98% of the facts were learnt with less than 5% mean 
squared error [30]. 

A general rule is that as the number of hidden layers increases, the prediction 
performance goes up, but only up to a certain point, after which the NNM 
performance starts to deteriorate [30]. To find the optimum topologies for our NNMs, 
we experimented with up to 3 hidden layers; each layer consisted on a different 
number of neurons. The details of some of our NNMs experiments are listed in Table 
1. The performance metric for an NNM was the "percentage of facts learnt with 95% 
(or more) accuracy". We chose a 5-layer NNM (#8 in the table) with 5 neurons in each 
of its hidden layers.  
 

Table 1 
 Configuration & Training Statistics for BDD-Complexity NNMs * 
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CONFIGURATION TRAINING STATISTICS 

No. 
Input 
Layer 

Neurons 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2
Neurons

Hidden 
Layer 3
Neurons

Output 
Layer 

Neurons 

Facts 
Learnt 

Facts Not 
Learnt 

% 
Facts 

Learnt 
Epochs 

1 2 10   1 12524 4789 72.3% 1047 
2 2 20   1 16208 1105 93.6% 623 
3 2 25   1 16059 1254 92.8% 745 
4 2 30   1 15844 1469 91.5% 630 
5 2 5 5  1 16889 424 97.6% 681 
6 2 7 7  1 15261 2052 88.1% 2133 
7 2 20 20  1 16987 326 98.1% 100 
8 2 5 5 5 1 17028 285 98.4% 98 
9 2 5 10 5 1 17049 264 98.5% 24 
10 2 20 20 20 1 17079 234 98.6% 17 

* Brain Maker training parameters: Training tolerance = 0.05; testing tolerance = 0.05; learning rate 
adjustment type = heuristic. (See [35] for detailed explanation of these settings). 

 
This configuration provided nearly the same training accuracy as its much larger 

3-layer counterparts (#9 and #10). The matrices containing weights for different layers 
of the chosen 5-5-5 neuron NNM (#5) are given in tables 2.1-2.4. 

 
Table 2.1 

Weight Matrix – Input Neuron Layer to Hidden Neuron Layer-1  
  ip1 ip2 

h11 0.915 3.255 
h12 -6.639 -7.992 
h13 3.511 7.981 
h14 -5.674 7.983 
h15 -6.618 -7.992 

 
Table 2.2 

Weight Matrix – Hidden Neuron Layer-1 to Hidden Layer-2 
  h11 h12 h13 h14 h15 

h21 2.811 -7.999 -1.437 -7.636 -7.999 
h22 6.195 -7.996 -0.372 -7.999 -7.998 
h23 -7.999 7.994 -7.949 1.305 7.999 
h24 -4.474 -7.998 -7.339 -2.447 -7.681 
h25 1.567 H 3.280 0.197 -7.999 

 
Table 2.3 

Weight Matrix – Hidden Neuron Layer-2 to Hidden Layer-3 
 h21 h22 h23 h24 h25 h26 

h31 -1.397 -2.336 -3.671 7.999 -2.518 5.084 
h32 7.108 0.165 -7.999 1.441 4.130 -7.657 
h33 -7.999 -7.999 5.342 -6.485 -1.831 -7.996 
h34 -5.675 0.421 2.268 0.539 -2.678 5.324 
h35 -0.130 3.669 -2.209 1.186 -0.938 0.138 

 
Table 2.4 
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Weight Matrix – Hidden Neuron Layer-3 to Output Layer 
 h31 h32 h33 h34 h35 

op1 -4.417 6.338 7.999 -6.016 4.531 
 

The weight matrices for the trained NNM (#8) Table 1 are shown in Tables 2.1-
2.4. Refer to Figure 9 for details on different neuron layers. For example, weight in 
ip1-h11 cell in the Table 2.1 refers to weight between the input “ip1” and “h11” 
neuron of the first hidden layer. Similarly, in the Table 2.2 the weight at the h11-h21 
location refers to the weight between the first layer neuron “h11” and the 2nd hidden 
layer “h21”. 
 
6.3 NN Modeling Results and Analysis 

Due to the inherent nature of NNMs, the input values used for running an NNM 
should be kept somewhat close to, but not necessarily the same as, the input values in 
the training set. Any significant deviations of the running set from the training set can 
provide misleading results. We used an arbitrary set of values for number-of-variables 
and NPT and used the NNM to predict the number of nodes (BDD complexity).  
Figure 9 indicates the comparison for experimental results and NNM predictions of 
BDD complexity for 10 variables. It can be inferred that the NNM result provides a 
very good approximation of the BDD complexity.  
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Figure 9. Complexity analyses of simulation and NNMs for 10 variables 
 

The same work has been repeated for Boolean functions with 2 to 15 variables. 
Figure 10, 11, and 12 illustrate experimental and predicted NNM results for variables 
7, 12 and 14 respectively. 
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Figure 10. Complexity analyses of simulation and NNMs for 7 variables 
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Figure 11. Complexity analyses of simulation and NNMs for 12 variables 
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Figure 12. Complexity analyses of simulation and NNMs for 14 variables 
 

Figure 13 shows the efficiency of the proposed NNM, which produces very close 
fit as the mathematical model [17] for the prediction of BDD complexity. It can be 
inferred that the NNM was able to match the experimental curve with minimum error 
for most of the Product terms. 
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Figure 13. Comparison of actual simulations with mathematical and NN models 
 
 
7. Application of Neural Networks to the Modeling of MaxBC and 

NPT of MinBC 
       This section covers the definition and implementation of the NNM for modeling 
the MaxBC and NPT of MinBC (Figure 14). 

 

 
Figure 14. NNM for MaxBC and the NPT of MinBC. There is a single input (number of variables) to 
the NNM which predicts two values (number of product terms for the lowest BDD complexity, and the 
maximum BDD complexity). 
 
      Just like the NNM in the previous section, the training and validation data sets 
were obtained by the experiment done in section 5. 
 
7.1 Training and Testing of NNM for BDD Complexity 
      For NN training purposes, we pre-processed the input data by taking its logarithm 
(the reason for doing so has been explained in section 6). 
In summary the steps used to train and run the network are given here: 
 
7.1.1 Steps for Training the NNM:  
a) Take logarithm of actual values of the inputs and output  
b) Train the NN with values from step (a) 
 
7.1.2 Steps for Using/Running the NNM:  
a) Take logarithm of the actual values of the input 
b) Present the values from step (a) to the NNM 
c) Apply anti-logarithm to the output of the NNM to get the actual result   
 

To create the NNM, we only had a limited number of data sets, just 13 to be 
specific. Here again, we experimented with up to 3 hidden layers; each layer consisted 
of a different number of neurons. The details of some of our NNMs experiments are 
listed in Table 2.5.  
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Table 2.5  

Configuration & Training statistics for MaxBC and MinBC   

No. 
Input 
Layer 

Neurons 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons

Hidden 
Layer 3 
Neurons

Output
Layer 

Neurons 

Facts 
Learnt 

Facts Not 
Learnt 

% 
Facts 

Learnt 
Epochs 

1 1 5   2 9 4 69.2% 10000 
2 1 10   2 11 2 84.6% 10000 
3 1 15   2 13 0 100.0% 10000 
4 1 20   2 13 0 100.0% 10000 
5 1 3 3  2 9 4 69.2% 10000 
6 1 5 5  2 9 4 69.2% 10000 
7 1 7 7  2 11 2 84.6% 10000 
8 1 10 10  2 9 4 69.2% 10000 
9 1 3 3 3 2 10 3 76.9% 10000 

10 1 5 5 5 2 10 3 76.9% 10000 
11 1 5 10 5 2 10 3 76.9% 10000 

* Brain Maker training parameters: Training tolerance = 0.07; testing tolerance = 0.07; learning rate adjustment type = heuristic  
 

We chose a 3-layer NNM (#3 in the table) with 15 neurons in its only hidden 
layer. This configuration was able to model all data sets with the desired accuracy. (#4 
also trained with the same accuracy, but with larger number of neurons). The matrices 
containing weights for different layers of the chosen 1-5-2 neuron NNM (#3) are 
given in Table 2.6-2.7. For example, weight in ip1-h1 cell in the Table 2.6 refers to 
weight between the inputs “ip1” and “h1” neuron of the hidden layers. Similarly in 
Table 2.7 the weight at the h1-op2 location refers to the weight between the hidden 
“h1” neuron and the output neuron “op2”. 
 
 

Table 2.6 
Weight Matrix – Input Neuron Layer to Hidden Neuron Layer  

 ip1 
h1 0.832 
h2 -3.196 
h3 -4.047 
h4 -7.061 
h5 -5.283 
h6 -2.455 
h7 0.228 
h8 -3.753 
h9 0.036 
h10 -1.035 
h11 3.762 
h12 -3.082 
h13 -0.986 
h14 -1.950 
h15 -2.382 

 
Table 2.7 

Weight Matrix – Hidden Neuron Layer to Output Neuron Layer  
HIDDEN NEURON LAYER TO OUTPUT NEURON 
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 h1 h2 h3 h4 h5 h6 h7 h8 
op1 0.602 -1.547 -3.286 -1.260 -0.899 -0.545 -1.768 -1.778 
op2 1.112 -3.171 0.419 -0.566 -0.264 -2.824 2.053 -2.899 
         
 h9 h10 h11 h12 h13 h14 h15  
op1 0.912 -0.056 1.113 -1.889 4.172 -1.300 0.242  
op2 -0.621 -0.297 0.151 -1.123 0.234 1.371 -1.167  

 
 
8. BDD Complexity Analysis use of Benchmark Circuits 
 

The validated results for NNM for selected ISCAS benchmark circuits are tabulated 
in Table 1. The experimental results were obtained on a Pentium IV machine with 512 
MB RAM running on Linux environment. Training of NNM with the experimental 
data has an up-front once only cost, and then the NNM is quickly run (within a few 
milliseconds or less) to predict the complexity of various functions with different 
number of variables and product terms. Running the models is generally faster than 
simulations, especially when larger benchmarks are involved (Hossain, et al., 2002). 

The 1st Column indicates the ISCAS benchmark circuit name and the 2nd and 3rd 
columns are for the maximum number of input variables and number of output 
circuits for the respective benchmark circuit. In column 4, the actual BDD complexity 
for the benchmark circuits have been calculated using CUDD package. The NNM 
prediction was calculated for the each number of variables and number of product 
terms for the each respective benchmark circuits. The columns 5, 6 and 7 illustrate the 
BDD complexity prediction use of NNM, NNM prediction error with compare to the 
actual BDD complexity results and the relative error respectively. The mathematical 
model results for BDD complexity is given in column 8, follows with column 9 and 
10 for Mathematical complexity error and relative error compared to the actual BDD 
complexity value, respectively.  

Table 1 
NNM results for ISCAS benchmark circuits 

 
BDD Complexity ( Nodes) 

Neural Network Model Mathematical Model 
Circuit 
Name 

Max 
Number 
of Input 

Variables 

Number 
of 

Circuits 
Actual 
Values Predicted 

Value 
Prediction 

Error 
Relative 

Error 
Predicted 

Value 
Prediction 

Error 
Relative 

Error 

Apex4 9 19 1286 1137 -149 -0.116 1009 -277 -0.215 
5xp1 7 10 90 100 10 0.111 85 -5 -0.056 
apex7 48 55 344 349 5 0.015 289 -55 -0.160 
Alu4 14 8 1162 1209 47 0.040 1426 264 0.227 
B1 3 4 12 9 -3 -0.250 9 -3 -0.250 
Cc 21 18 105 101 -4 -0.038 84 -21 -0.200 
C8 28 17 149 157 8 0.054 189 40 0.268 

decod 5 16 96 94 -2 -0.021 72 -24 -0.250 
Clip 9 5 394 374 -20 -0.051 262 -132 -0.335 

cm42a 3 13 50 46 -4 -0.080 31 -19 -0.380 
cm138a 6 8 56 59 3 0.054 68 12 0.214 
cm162a 11 6 66 79 13 0.197 122 56 0.848 
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cm163a 9 5 59 71 12 0.203 63 4 0.068 
cm82a 5 3 19 16 -3 -0.158 15 -4 -0.211 
Con1 6 2 18 17 -1 -0.056 14 -4 -0.222 

Cu 14 11 89 75 -14 -0.157 74 -15 -0.169 
majority 5 1 8 7 -1 -0.125 6 -2 -0.250 
misex1 8 7 69 70 1 0.014 60 -9 -0.130 
Rd53 5 3 24 18 -6 -0.250 19 -5 -0.208 
Rd73 7 3 38 40 2 0.053 33 -5 -0.132 
Rd84 8 4 54 41 -13 -0.241 24 -30 -0.556 
Sao2 10 4 171 190 19 0.111 215 44 0.257 
Sqrt8 8 4 43 45 2 0.047 46 3 0.070 
Sct 14 15 177 215 38 0.215 213 36 0.203 

squar5 5 8 57 49 -8 -0.140 52 -5 -0.088 
X2 10 7 68 70 2 0.029 80 12 0.176 
x1 25 35 557 732 175 0.314 691 134 0.241 

xor5 5 1 6 5 -1 -0.167 5 -1 -0.167 
I6 5 67 413 355 -58 -0.140 345 -68 -0.165 
I7 6 67 493 598 105 0.213 501 8 0.016 

Pm1 9 13 80 105 25 0.313 88 8 0.100 
C17 4 2 10 8 -2 -0.200 9 -1 -0.100 
Alu2 10 6 249 290 41 0.165 265 16 0.064 
Cht 47 36 192 176 -16 -0.083 166 -26 -0.135 
i3 132 6 138 186 48 0.348 173 35 0.254 
i8 133 81 2498 3148 650 0.260 3482 984 0.394 

cm150a 21 1 78 93 15 0.192 98 20 0.256 
b12 15 9 97 106 9 0.093 131 34 0.351 
cmb 16 4 59 61 2 0.034 65 6 0.102 
b9 41 21 310 301 -9 -0.029 287 -23 -0.074 

Total 605 RMS Error 0.163   0.260 
 

The RMS relative error was computed as an estimation of the deviation of the 
measured from predicted values. 
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The computed deviation for Boolean function complexity estimation use of NNM 

for complete set of 610 circuits was 0.163, which indicates that the NNM provides a 
close match with the actual complexity values for the benchmark with maximum of 
133 input variables. It can be inferred from the benchmark circuit validation, that all 
the benchmarks are mostly consist of product terms of 1-13 variables, even though the 
number of inputs goes up to much high than 14.  It was also observed that most of the 
benchmarks do not have product terms which can produce the maximum Boolean 
function complexity for the variable of that product terms. The NNMs were more 
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effective compared to the mathematical model RMS error of 0.260 for the same 
benchmark circuits.  

It can be concluded from these results that the training set had a statistically 
significant number of samples to present to a neural network and it allowed NNM to 
be adequately trained within a user-define accuracy, therefore NNM was able to 
predict the BDD complexity for variables beyond the experimental data limits. 

 
 

9. Conclusion 
In this research work, we have proposed a new BDD complexity prediction 

methodology based on neural network as another alternative to the CUDD simulation 
and the mathematical models presented by the same authors. An advantage of this 
model is that it is a single integrated model for different number of variables and 
number of product terms. The results show the capabilities of training algorithms in 
neural networks, which produce a close match for the CUDD simulation with 
minimum errors of 4.22%, 1.32% and 0.39% for the calculation of the BDD 
complexity, the MaxBC and the NPT of MinBC respectively. Once NNMs had been 
developed, they could be used to conduct further experiments with different types of 
inputs, in a fraction of the time what a circuit simulator would take. The NNM was 
capable of providing useful clues about the complexity of the final design, which will 
leads to a great reduction in time complexity for digital circuit’s designs. The NNM 
RMS error of 0.161 for ISCAS benchmark circuit justifies the efficiency of the NNM 
compared to the mathematical model. In light of the results, we conclude that the 
NNM proposed in this work could be a valuable tool for exploring the complex 
computational capabilities of neural network. We are currently exploring the 
extension of this work to other complexity applications.  
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