

Azam Beg
College of Information

Technology
 United Arab Emirates

University, Al-Ain, UAE
abeg@uaeu.ac.ae

P. W. Chandana Prasad
College of Information

Technology,
United Arab Emirates

University, Al-Ain, UAE
prasadc@uaeu.ac.ae

Mirza M. Arshad
Department of Electrical

Engineering,
University of Engineering &

Technology, Lahore, Pakistan
arshad@scholaris.com

Khursheed Hasnain
PN College of Engineering,

Karachi, Pakistan
skhpnec@hotmail.com

Abstract-Being able to model the complexity of Boolean

functions in terms of number of nodes in a Binary Decision
Diagram can be quite useful in VLSI/CAD applications. Our
investigation showed that it is possible to use the recurrent
neural network (RNN) models for the prediction of circuit
complexity. The modeling results matched closely with
simulations with an average error of less than 1%. The
correlation coefficient between RNN's predictions and actual
results for ISCAS benchmark circuits was 0.629.

I. INTRODUCTION

A. Boolean Functions
VLSI for the past several decades has benefited by

following the Moore's Law [1] that had predicted doubling of
transistor on a chip every year. Constant miniaturization of
circuit has increased the complexity of VLSI design many
folds. These VLSI designs can directly benefit from optimal
representation of a circuits as sets of Boolean functions (BFs)
 [2]. BFs find applications in areas such as combinational logic
verification [3] sequential-machine equivalence [4], logic
optimization of combinational circuits [5], test pattern
generation [6], timing verification in the presence of false
paths [7], and symbolic simulation [8].

Researchers have in the past tried to classify Boolean
functions on the basis of different complexity measures, for
example, the minimum size to implement a computing entity
 [10]. The way a Boolean function is implemented directly
affects the computation and memory resources. Being able to
estimate the circuit complexity based on Boolean functions is
useful for conducting design feasibility studies [11].
Mathematical and feed forward neural networks (NN) models
have been used previously to model the BF complexity
 [12] [13] [14].

B. Neural Networks
NNs are based on the principle of biological neurons. An

NN may have one or more input and output neurons as well as
one or more (hidden) layers of neurons interconnecting the
input and output neurons. In the well-known feed-forward
NNs (FFNNs), the outputs of one layer of neurons send data
(only) to the next layer (Fig. 1.) Recurrent NNs not only make
use of current inputs (time t) but also the internal state (time t-
1, t-2,…) so on each time-step, new inputs are fed back into
the network [16] (Fig. 2.) In the past, both FFNNs and RNNs

have been successfully used in developing prediction models
 [14] [17].

Back-propagation (BP) is a common scheme for creating
(training) the FFNNs. During the process of NN-creation,
internal weights of the neurons are iteratively adjusted so that
the outputs are produced within desired accuracy [15]. The
RNNs are trained using a variation of BP called back-
propagation through time (BPTT) in which the weights of the
hidden layers are adjusted using not only the present inputs
but also the previous states [16] [17]. The training process of
the NNs requires that the training set (input-output data-sets)
be chosen carefully. The selected dataset usually needs to be
pre-processed prior to being fed to a NN [18].

The objective of this paper is to investigate the feasibility of
using RNNs to predict the complexity of BFs. Section II.A
this paper discusses the data acquisition for RNN model
development and Section II.B shows how the data was
processed before training the RNNs. Section II.C discusses
the RNN configuration and training and Section II.D presents
the results and analysis. Lastly, Section Error! Reference
source not found. presents the conclusions of this research.

II. RNN MODEL FOR BOOLEAN FUNCTION COMPLEXITY
PREDICTION

A. Data Source
We used Colorado University Decision Diagram (CUDD)

package [19] to determine the complexity of a variety of BFs
(in terms of number of nodes). 100 SOP terms were generated
for variable count n {n | n = 1, 2 … 14}. This process was

 Inputs

State/Hidden

Outputs

weights

weights

Fig. 1. Topology of a simple feed-
forward neural network

 Inputs

State/Hidden

Outputs

weights

weights

delayed
weights

Fig. 2. Topology of a simple

recurrent neural network

Using Recurrent Neural Networks for Circuit
Complexity Modeling

ACCEPTED: A. Beg, P. W. C. Prasad, M. Arshad, and S. K. Hasnain, "Using Recurrent Neural Networks for Circuit Complexity Modeling,"
 in 10th IEEE International Multitopic Conference (ITMIC'06), Islamabad, Pakistan, 2006, pp. 194-197.

repeated until BFC became 1. These results are plotted in Fig.
3.

We observed that BFC increases as the number of minterms
(product terms) increases until it reaches a peak corresponding
to the maximum complexity. Beyond the peak, the minterms
tend to simplify and BFC declines and reaches a final value of
zero.

B. Data Processing
A purpose of data pre-processing is to ensure that the inputs

with larger absolute values should be given the same
importance as the inputs that have smaller magnitudes
 [18] [21].

In our case, we can see the need for data transformation in
Fig. 3 that shows BFC curves for 2- to 14- variables. (The
plotted data was acquired from Boolean function simulations
as explained in Section A [14].) The number of 'minterms' in a
function is shown on the horizontal axis; on the vertical axis,
'nodes' represents the complexity of a BF. The curves for 2-6
variables, in their original form, are not only visually hard to
see but also hard for a NN to learn. The minimum and
maximum values on both axes of these curves vary widely
and non-linearly. So the smaller variable curves could be
ignored altogether during the NN-training process; data
processing alleviates this issue by transforming the curves that
have a similar set of minimum and maximum ranges.

In this paper, we first transform the data by taking logarithm
of minterms and number of nodes. We did not apply any
transformation to variable values due to their existing linearity
and their limited range of 2 to 14. Effect of data
transformation on the 'visibility' of data is evident in Fig. 4.

C. RNN Configurations and Training Method
In our research, BFC is a function of number of variables

and number of minterms; so the RNN can be represented by a
block diagram of Fig. 5. This means that in our RNN models,
the input neuron count is fixed at 2 (one for 'minterms' and the
other for 'variables') and output neuron count at one (for 'node'
prediction).

0

0.5
1

1.5

2

2.5
3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4
Minterms

N
od

es

2-variable

14-variable

Fig. 4. Effect of logarithmic transformation on the original data. The general

shape of the curves changes while making all of them more 'visible'.

For the RNN training purposes, we started with the RNN

learning rate of 0.1 and then adjusted it down in increments of
0.01 as the training progressed. The initial weights were
randomly set. Although, we experimented with a large
number of RNN configurations, we only used 30 of these
configurations to collect the data on RNNs' learnability. One
recurrent copy of inputs and one recurrent copy of output was
used in all the RNNs. The RNN configurations were varied by
changing the number of neurons (i.e., 2, 4, 6 … 18, 20) in the
(single) hidden layer. Each configuration was used three times
to train a completely new NN to take into consideration the
effect of local minima. The averages of the three training runs
were used to calculate the training and validation accuracy for
a given configuration.

The input-output dataset was divided into two sets: (1)
training set: 90% of the facts were used to train the RNN; (2)
validation set: 10% facts were used for validating a trained
RNN. During NN-training, only the training set is presented
to the NN, and not the validation set. The properly converging
RNNs provided maximum accuracy well before they reached
1000 epochs, so we stopped NN training when 1000 epochs
were completed.

0.00

400.00

800.00

1200.00

1600.00

0 400 800 1200 1600 2000 2400 2800 3200
Minterms

N
od

es

14-variable

13-variable

12-variable

Fig. 3. Boolean function complexity data for 2- to 14-variables in

original (raw) format. The smaller variable curves (lower left corner)
are not as visible as the large ones and have the potential of not being

correctly learnt by the NN.

Recurrent
NN Model for BFC

Prediction

number of
variables

number of
minterms

BFC/number of
nodes

Fig. 5. Inputs and outputs of BFC prediction RNN. Two inputs
are the number of variables, and number of minterms, and the

output is BFC in terms of number of nodes.

ACCEPTED: A. Beg, P. W. C. Prasad, M. Arshad, and S. K. Hasnain, "Using Recurrent Neural Networks for Circuit Complexity Modeling,"
 in 10th IEEE International Multitopic Conference (ITMIC'06), Islamabad, Pakistan, 2006, pp. 194-197.

D. RNN Training Results and Analysis
The RNN training performance for each of the 2 to 14

variables for all samples is shown in Fig. 6; the average error
tends to fluctuate. For example, number of nodes (BFC) for 4
variables is predicted with an average error of 9.8% and for 14
variables with just 0.03% error.

We used combinations of number of variables and minterms
to predict the BFC from our RNNs. Two comparative plots
(actual BFC values from simulations vs. the predicted BFC
values) are shown in Fig. 7 and Fig. 8 for 10 and 12 variables,
respectively. We observed that the RNNs were able to learn
the overall behavior of the original input-output data sets.

Complete RNN models' average error came to be less than
1%. Additionally, we used ISCAS benchmark circuits [22] to
compare the performance of RNN with actual benchmark
results derived using CUDD package. (ISCAS benchmarks
are sets of multi-input compound Boolean expressions). This
comparison is shown in Table 1. For the given circuits, the
RNN correlation coefficient of was found to be 0.629, which
is an evidence of a significant relationship between the two
measures.

III. CONCLUSIONS

In this paper, we investigated the use of RNNs for BFC
prediction. The RNNs were able to learn from the BFC
behavior for 2 to 14 variables with an overall error of less than
1%; the correlation between the actual and predicted values
for ISCAS benchmarks was 0.629. An advantage of the
proposed RNN is that a single NN can be used to predict the
BFC for a wide range of variables. Use of RNNs for
benchmark circuits is a subject of our ongoing research. Use
of different data pre-processing techniques to improve the
RNN model performance is also being looked into.

TABLE 1
 COMPARISON OF RNN'S PREDICTIONS WITH ISCAS BENCHMARK CIRCUITS.
THE OUTPUT OF RNN IS CLOSELY CORRELATED WITH THE ACTUAL VALUES.

Mean (Nodes)

Circuit
Name

Number
of

Circuits Actual RNN

Mean
Difference

with
Actual

Standard
Deviation Correlation

5xp1 7 0.845 0.696 0.181 0.917 0.449

Apex7 43 0.699 0.651 0.198 0.938 0.500

b1 1 0.893 0.540 - - -

b12 9 0.846 0.822 0.178 0.878 -0.206

C17 2 0.980 0.540 0.000 - -

cc 11 0.650 0.608 0.097 0.744 0.567

cht 36 0.954 0.651 0.033 0.956 0.708

clip 5 0.910 0.795 0.195 0.991 0.838

cm138a 8 0.858 0.792 0.000 0.000 1.000

cm162a 4 0.413 0.447 0.195 0.910 0.550

cm163a 5 0.593 0.614 0.152 0.950 0.572

cm82a 2 0.892 0.631 0.103 0.975 0.600

Con1 2 0.817 0.584 0.077 1.000 1.000

Cu 10 0.487 0.331 0.236 0.994 0.790

decod 16 0.544 0.388 0.000 1.000 1.000

inc 9 0.862 0.768 0.115 0.986 0.772

majority 1 0.925 0.177 - - -

misex1 7 0.781 0.665 0.160 0.954 0.328

pm1 9 0.546 0.541 0.186 0.959 0.689

rd53 3 0.855 0.542 0.179 0.857 0.788

rd73 3 0.564 0.386 0.113 0.999 0.969

Sao2 4 0.567 0.620 0.023 1.000 0.995

Sqrt8 3 0.967 0.917 0.045 -0.946 -0.821

Squar5 8 0.887 0.529 0.035 0.787 0.826

Xor5 1 0.709 0.401 - - -

Z4ml 4 0.813 0.765 0.159 0.996 0.923

Total 213 0.121 0.811 0.629

10 variables

0.0

0.5

1.0

1.5

2.0

2.5

1 21 41 61 81 101
Samples

A
ct

ua
l v

s
pr

ed
ic

te
d

(s
ca

le
d)

Fig. 7. Actual (solid line) vs. RNN predictions (dashed line) for 10 variables.

Variables

-10.0%

-5.0%

0.0%

5.0%

10.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 6. Prediction accuracy for 2 to 14 variables. Predictions made for larger

variables (e.g. 12, 13 and 14) have smaller error than the lower variables (2, 3
and 4).

ACCEPTED: A. Beg, P. W. C. Prasad, M. Arshad, and S. K. Hasnain, "Using Recurrent Neural Networks for Circuit Complexity Modeling,"
 in 10th IEEE International Multitopic Conference (ITMIC'06), Islamabad, Pakistan, 2006, pp. 194-197.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 21 41 61 81 101 121
Samples

A
ct

ua
l v

s
pr

ed
ic

te
d

(s
ca

le
d)

12 variables

Fig. 8. Actual (solid line) vs. RNN predictions (dashed line) for 12 variables.

IV. REFERENCES
[1] G. E. Moore, “Progress in Digital Integrated Electronics,” IEEE IEDM,

1975, pp. 11-13.
[2] R.E. Bryant, “Graph-based algorithm for Boolean function

manipulation,” IEEE Trans. Computers, Vol. 35, 1986, pp.677-691.
[3] S. Mahk, A, Wang, R. Brayton, and A, Sangiovanni-Viicentelli, “Logic

Verification using Binary Decision Diagrams in a Logic Synthesis
Environment,” in Proc. Int. Conf. CAD (KCAD-88), 1988, pp. 6-9.

[4] 0. Coudert. C. Berthec and J. Madre, “Verification of Sequential
Machines using Boolean Function Vectors,“in IMEC-IFIP lnt.
Workshop on Applied Formal Methods for Correct VLSI Design, 1989.

[5] S. Muroga, Y. Kambayashi. H. Lai, and J. Culliney, “The Transduction
Method,” IFTEE Trans. Cow., vol. 38, 1989, pp. 1404-1424.

[6] M. A. Breuer and A. D. Friedman, 1976 “Diagnosis and Reliable Design
of Digital Systems,” Computer Science Press.

[7] P. McGeer and R. Brayton, “Efficient Algorithms for Computing the
Longest Viable Path in a Combinational Network,” in Proc. 26th Design
Automation Conference, 1989, pp.561-567.

[8] K. Cho, “Test Pattern Generation for Combinational and Sequential
MOS Circuits by Symbolic F&t Simulation,” PhD thesis, Carnegie
Mellon University, 1988.

[9] Shannon, “The synthesis of two-terminal switching circuits,” Bell Syst.
Techn. J.28, pp. 59-98.

[10] M. Nemani, and F.N. Najm, “High-level power estimation and the area
complexity of Boolean functions,” Proc. of IEEE Intl. Symp. on Low
Power Electronics and Design, 1996, pp: 329-334.

[11] A. Assi, P.W. C. Prasad , B. Mills, and A. El-Chouemi, “Empirical
Analysis and Mathematical Representation of the Path Length
Complexity in Binary Decision Diagrams”, in Journal of Computer
Science, Science Publications, Vol. 2(3), 2005, pp. 236-244.

[12] L. Franco, M. Anthony, "On a generalization complexity measure for
Boolean functions", IEEE Conference on Neural Networks,
Proceedings, v 2, 2004 IEEE International Joint Conference on Neural
Networks – Proceedings, 2004, pp. 973-978.

[13] L. Franco, "Role of function complexity and network size in the
generalization ability of feedforward networks", Lecture Notes in
Computer Science, v 3512, Computational Intelligence and Bioinspired
Systems: 8th International Workshop on Artificial Neural Networks,
IWANN 2005, Proceedings, 2005. p 1-8.

[14] A. Assi, P. W. Chandana Prasad, and A. Beg, Modeling the Complexity
of Digital Circuits Using Neural Networks, WSEAS Transactions on
Circuits and Systems, June 2006.

[15] M. Caudill, AI Expert: Neural Network Primer, Miller Freeman
Publications, 1990.

[16] M. Boden, "A guide to recurrent neural networks and backpropagation",
(website) http://www.itee.uq.edu.au/~mikael/papers/rn_dallas.pdf, Sept.
2006.

[17] L. Medsker, L. Jain, "Recurrent Neural Networks: Design and
Applications", CRC Press, 1999.

[18] K. Yale, “Preparing the right data for training neural networks,” IEEE
Spectrum, Vol. 34, Issue 3, Mar. 1997, pp. 64-66.

[19] F. Somenzi, “CUDD: CU Decision Diagram Package.
<ftp://vlsi.colorado.edu/> pub/., 2003.

[20] D.L. Tuck, "Practical polynomial expansion of input data can improve
neurocomputing results", ANNES'93, Los Alamitos, CA, 1993, pp. 42-
45.

[21] T. Masters, Signal and Image Processing with Neural Networks” John
Wiley & Sons, Inc., 1994.

[22] M. Hansen, H. Yalcin and J. P. Hayes, "Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering," IEEE Trans. On
Design and Test, 1999, vol. 16, pp. 72-80.

ACCEPTED: A. Beg, P. W. C. Prasad, M. Arshad, and S. K. Hasnain, "Using Recurrent Neural Networks for Circuit Complexity Modeling,"
 in 10th IEEE International Multitopic Conference (ITMIC'06), Islamabad, Pakistan, 2006, pp. 194-197.

