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Abstract-Being able to model the complexity of Boolean 

functions in terms of number of nodes in a Binary Decision 
Diagram can be quite useful in VLSI/CAD applications. Our 
investigation showed that it is possible to use the recurrent 
neural network (RNN) models for the prediction of circuit 
complexity. The modeling results matched closely with 
simulations with an average error of less than 1%. The 
correlation coefficient between RNN's predictions and actual 
results for ISCAS benchmark circuits was 0.629.  

I. INTRODUCTION  

A. Boolean Functions  
VLSI for the past several decades has benefited by 

following the Moore's Law  [1] that had predicted doubling of 
transistor on a chip every year. Constant miniaturization of 
circuit has increased the complexity of VLSI design many 
folds. These VLSI designs can directly benefit from optimal 
representation of a circuits as sets of Boolean functions (BFs) 
 [2]. BFs find applications in areas such as combinational logic 
verification  [3] sequential-machine equivalence  [4], logic 
optimization of combinational circuits  [5], test pattern 
generation  [6], timing verification in the presence of false 
paths  [7], and symbolic simulation  [8].  

Researchers have in the past tried to classify Boolean 
functions on the basis of different complexity measures, for 
example, the minimum size to implement a computing entity 
 [10]. The way a Boolean function is implemented directly 
affects the computation and memory resources. Being able to 
estimate the circuit complexity based on Boolean functions is 
useful for conducting design feasibility studies  [11]. 
Mathematical and feed forward neural networks (NN) models 
have been used previously to model the BF complexity 
 [12] [13] [14]. 

B. Neural Networks  
NNs are based on the principle of biological neurons. An 

NN may have one or more input and output neurons as well as 
one or more (hidden) layers of neurons interconnecting the 
input and output neurons.  In the well-known feed-forward 
NNs (FFNNs), the outputs of one layer of neurons send data 
(only) to the next layer (Fig. 1.) Recurrent NNs not only make 
use of current inputs (time t) but also the internal state (time t-
1, t-2,…) so on each time-step, new inputs are fed back into 
the network  [16] (Fig. 2.) In the past, both FFNNs and RNNs 

have been successfully used in developing prediction models 
 [14] [17].    

Back-propagation (BP) is a common scheme for creating 
(training) the FFNNs. During the process of NN-creation, 
internal weights of the neurons are iteratively adjusted so that 
the outputs are produced within desired accuracy  [15]. The 
RNNs are trained using a variation of BP called back-
propagation through time (BPTT) in which the weights of the 
hidden layers are adjusted using not only the present inputs 
but also the previous states  [16] [17]. The training process of 
the NNs requires that the training set (input-output data-sets) 
be chosen carefully. The selected dataset usually needs to be 
pre-processed prior to being fed to a NN  [18].   

The objective of this paper is to investigate the feasibility of 
using RNNs to predict the complexity of BFs. Section II.A 
this paper discusses the data acquisition for RNN model 
development and Section II.B shows how the data was 
processed before training the RNNs. Section II.C discusses 
the RNN configuration and training and Section II.D presents 
the results and analysis. Lastly, Section Error! Reference 
source not found. presents the conclusions of this research.   

II. RNN MODEL FOR BOOLEAN FUNCTION COMPLEXITY 
PREDICTION   

A. Data Source 
We used Colorado University Decision Diagram (CUDD) 

package  [19] to determine the complexity of a variety of BFs 
(in terms of number of nodes). 100 SOP terms were generated 
for variable count n {n | n = 1, 2 … 14}. This process was 
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Fig. 1. Topology of a simple feed-
forward neural network  
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Fig. 2. Topology of a simple 

recurrent neural network  

Using Recurrent Neural Networks for Circuit 
Complexity Modeling 

ACCEPTED: A. Beg, P. W. C. Prasad, M. Arshad, and S. K. Hasnain, "Using Recurrent Neural Networks for Circuit Complexity Modeling,"
 in 10th IEEE International Multitopic Conference (ITMIC'06), Islamabad, Pakistan, 2006, pp. 194-197.



repeated until BFC became 1.  These results are plotted in Fig. 
3.  

We observed that BFC increases as the number of minterms 
(product terms) increases until it reaches a peak corresponding 
to the maximum complexity. Beyond the peak, the minterms 
tend to simplify and BFC declines and reaches a final value of 
zero.   

B. Data Processing  
A purpose of data pre-processing is to ensure that the inputs 

with larger absolute values should be given the same 
importance as the inputs that have smaller magnitudes 
 [18] [21].  

In our case, we can see the need for data transformation in 
Fig. 3 that shows BFC curves for 2- to 14- variables. (The 
plotted data was acquired from Boolean function simulations 
as explained in Section  A  [14].) The number of 'minterms' in a 
function is shown on the horizontal axis; on the vertical axis, 
'nodes' represents the complexity of a BF. The curves for 2-6 
variables, in their original form, are not only visually hard to 
see but also hard for a NN to learn. The minimum and 
maximum values on both axes of these curves vary widely 
and non-linearly. So the smaller variable curves could be 
ignored altogether during the NN-training process; data 
processing alleviates this issue by transforming the curves that 
have a similar set of minimum and maximum ranges.  

In this paper, we first transform the data by taking logarithm 
of minterms and number of nodes. We did not apply any 
transformation to variable values due to their existing linearity 
and their limited range of 2 to 14. Effect of data 
transformation on the 'visibility' of data is evident in Fig. 4. 

C. RNN Configurations and Training Method  
In our research, BFC is a function of number of variables 

and number of minterms; so the RNN can be represented by a 
block diagram of Fig. 5. This means that in our RNN models, 
the input neuron count is fixed at 2 (one for 'minterms' and the 
other for 'variables') and output neuron count at one (for 'node' 
prediction).    
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Fig. 4. Effect of logarithmic transformation on the original data. The general 

shape of the curves changes while making all of them more 'visible'. 
 

  
For the RNN training purposes, we started with the RNN 

learning rate of 0.1 and then adjusted it down in increments of 
0.01 as the training progressed. The initial weights were 
randomly set. Although, we experimented with a large 
number of RNN configurations, we only used 30 of these 
configurations to collect the data on RNNs' learnability. One 
recurrent copy of inputs and one recurrent copy of output was 
used in all the RNNs. The RNN configurations were varied by 
changing the number of neurons (i.e., 2, 4, 6 … 18, 20) in the 
(single) hidden layer. Each configuration was used three times 
to train a completely new NN to take into consideration the 
effect of local minima. The averages of the three training runs 
were used to calculate the training and validation accuracy for 
a given configuration.  

The input-output dataset was divided into two sets: (1) 
training set: 90% of the facts were used to train the RNN; (2) 
validation set: 10% facts were used for validating a trained 
RNN. During NN-training, only the training set is presented 
to the NN, and not the validation set. The properly converging 
RNNs provided maximum accuracy well before they reached 
1000 epochs, so we stopped NN training when 1000 epochs 
were completed. 
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Fig. 3. Boolean function complexity data for 2- to 14-variables in 

original (raw) format. The smaller variable curves (lower left corner) 
are not as visible as the large ones and have the potential of not being 

correctly learnt by the NN. 
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Fig. 5. Inputs and outputs of BFC prediction RNN.  Two inputs 
are the number of variables, and number of minterms, and the 

output is BFC in terms of number of nodes.   
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D. RNN Training Results and Analysis   
The RNN training performance for each of the 2 to 14 

variables for all samples is shown in Fig. 6; the average error 
tends to fluctuate. For example, number of nodes (BFC) for 4 
variables is predicted with an average error of 9.8% and for 14 
variables with just 0.03% error.  

We used combinations of number of variables and minterms 
to predict the BFC from our RNNs. Two comparative plots 
(actual BFC values from simulations vs. the predicted BFC 
values) are shown in Fig. 7 and Fig. 8 for 10 and 12 variables, 
respectively. We observed that the RNNs were able to learn 
the overall behavior of the original input-output data sets.  

Complete RNN models' average error came to be less than 
1%. Additionally, we used ISCAS benchmark circuits [22] to 
compare the performance of RNN with actual benchmark 
results derived using CUDD package. (ISCAS benchmarks 
are sets of multi-input compound Boolean expressions). This 
comparison is shown in Table 1. For the given circuits, the 
RNN correlation coefficient of was found to be 0.629, which 
is an evidence of a significant relationship between the two 
measures. 

III. CONCLUSIONS 

In this paper, we investigated the use of RNNs for BFC 
prediction. The RNNs were able to learn from the BFC 
behavior for 2 to 14 variables with an overall error of less than 
1%; the correlation between the actual and predicted values 
for ISCAS benchmarks was 0.629. An advantage of the 
proposed RNN is that a single NN can be used to predict the 
BFC for a wide range of variables. Use of RNNs for 
benchmark circuits is a subject of our ongoing research. Use 
of different data pre-processing techniques to improve the 
RNN model performance is also being looked into.  
 
 
 
 

TABLE 1 
 COMPARISON OF RNN'S PREDICTIONS WITH ISCAS BENCHMARK CIRCUITS. 
THE OUTPUT OF RNN IS CLOSELY CORRELATED WITH THE ACTUAL VALUES.  

  
Mean ( Nodes) 

Circuit 
Name 

Number 
of    

Circuits Actual RNN 

Mean 
Difference 

with 
Actual 

Standard 
Deviation Correlation

5xp1 7 0.845 0.696 0.181 0.917 0.449 

Apex7 43 0.699 0.651 0.198 0.938 0.500 

b1 1 0.893 0.540 - - - 

b12 9 0.846 0.822 0.178 0.878 -0.206 

C17 2 0.980 0.540 0.000 - - 

cc 11 0.650 0.608 0.097 0.744 0.567 

cht 36 0.954 0.651 0.033 0.956 0.708 

clip 5 0.910 0.795 0.195 0.991 0.838 

cm138a 8 0.858 0.792 0.000 0.000 1.000 

cm162a 4 0.413 0.447 0.195 0.910 0.550 

cm163a 5 0.593 0.614 0.152 0.950 0.572 

cm82a 2 0.892 0.631 0.103 0.975 0.600 

Con1 2 0.817 0.584 0.077 1.000 1.000 

Cu 10 0.487 0.331 0.236 0.994 0.790 

decod 16 0.544 0.388 0.000 1.000 1.000 

inc 9 0.862 0.768 0.115 0.986 0.772 

majority 1 0.925 0.177 - - - 

misex1 7 0.781 0.665 0.160 0.954 0.328 

pm1 9 0.546 0.541 0.186 0.959 0.689 

rd53 3 0.855 0.542 0.179 0.857 0.788 

rd73 3 0.564 0.386 0.113 0.999 0.969 

Sao2 4 0.567 0.620 0.023 1.000 0.995 

Sqrt8 3 0.967 0.917 0.045 -0.946 -0.821 

Squar5 8 0.887 0.529 0.035 0.787 0.826 

Xor5 1 0.709 0.401 - - - 

Z4ml 4 0.813 0.765 0.159 0.996 0.923 

Total 213   0.121 0.811 0.629  
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Fig. 7. Actual (solid line) vs. RNN predictions (dashed line) for 10 variables. 

 

Variables

-10.0%

-5.0%

0.0%

5.0%

10.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

 
Fig. 6. Prediction accuracy for 2 to 14 variables. Predictions made for larger 

variables (e.g. 12, 13 and 14) have smaller error than the lower variables (2, 3 
and 4).  
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Fig. 8. Actual (solid line) vs. RNN predictions (dashed line) for 12 variables. 
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