
Modeling the Behavior of BDD Complexity Using

Neural Networks

Author 1, 2, Dept A, XYZ University

Author 3, Dept B, XYZ University

Abstract - This research work proposes a new method to
estimate the Binary Decision Diagram (BDD) complexity. A
feed-forward back-propagation neural network (NN) is used
and a large number of randomly generated single output
Boolean functions have been considered. Experimental results
show good correlation between the theoretical results and those
predicted by the NN model (NNM), which will give insights to
the complexity of Very Large Scale Integration
(VLSI)/Computer Aided Design (CAD) designs. This model
demonstrates the ability of NNs to provide reliable
classification of BDD complexity.

I. INTRODUCTION

The efficient representation and manipulation of Boolean
functions is important for many algorithms in a wide variety
of applications in digital circuits. In particular, many
problems in Very Large Scale Integration (VLSI) and
Computer Aided Design (CAD) for digital circuits can be
expressed as a sequence of operations performed over a set
of Boolean functions [1].

With the rapid increase of the amount of circuitries on a
single chip, there is a need for greater optimization and
efficiency in the design process [2]. Boolean function
representation has direct influence on the computation time
and space complexity of digital circuits.

During the last two decades, BDDs have gained great
popularity as efficient method for representing Boolean
functions [3]. BDD in general is a direct acyclic graph
representation of Boolean functions proposed by Akers [4]
and further generalized by Bryant [5]. In many applications,
the efficiency of BDD representations is determined by the
size of the BDD defined as the number of nodes in the BDD
for a given Boolean function. The success of this technique
has attracted researchers in the area of VLSI CAD systems
[3]. Evaluation of the space complexity of Boolean
functions can be performed by determining the area
complexity of the BDD. It will be useful to have an
estimation of the BDD complexity prior to making decisions
on the feasibility of the design. There have been a lot of
research works [6], [7], [8] done on the estimation of
combinational and sequential circuit parameters from the
exact Boolean function describing the circuit. Mathematical
models to predict the complexity of Boolean functions and
XOR/XNOR min-terms were introduced in papers [9], [10],
[11].

NNs have proven their usefulness in the area of pattern
recognition and prediction applications [12]. Apart from this
lot of research has been done on the computational
properties of NNs [13], [14]. The measure of efficiency of
the circuit have been addressed in relation with the area of
circuit implementation [15], where the complexity of
Boolean functions is analyzed in terms of their
implementation using different kind of circuits, from those
with simple SOP, to feed forward neural network with
threshold functions. In recent times some research has
covered the topic of Boolean function complexity using NN
learning process. For example, generalization ability of NNs
was presented in [18], [19] but the authors only considered
Boolean functions of 4 and 8 variables.

The main objective of this paper is to introduce a BDD
complexity estimation methodology based on NNs for a
wide range of variables. The resulting model will enable the
design feasibility and performance to be analyzed without
building its complete BDD. This model has produced
competitive results against the mathematical prediction of
the BDD complexity. In the second section, we review the
previous works done by the same authors on the estimation
of BDD complexity. The proposed NNM for the estimation
of BDD complexity is explained in the third, fourth and fifth
sections. Finally in section six, we conclude our paper.

II. PREVIOUS WORK

In this section we will briefly describe the results achieved
by the authors for the estimation of BDD complexity.

A. Relation between the Size of a Boolean function and the
BDD Complexity

The complexity of the ROBDD mainly depends on the
number of nodes represented by the BDD. Experiments
were done in [9], [10] to analyze the complexity variation in
BDDs. The experimental and equation graph (Fig. 1) shows
that the complexity of the BDD can be modeled
mathematically by (1).

ACCEPTED: A. Beg, P. Chandanna, and A. Assi, "Modeling the Behavior of BDD Complexity Using Neural Networks,"
in 4th IASTED International Conference on Circuits, Signals, and Systems, San Francisco, CA, USA, 2006.

Fig. 1. Simulation / Mathematical BDD Complexity for 11 Variables

1)(+⋅⋅= ⋅− γβα NPTeNPTNN (1)

where NN is the number of nodes that represents the

complexity of the BDD, NPT is the number of non-

repeating product terms in the Boolean function,α , β and

γ are three constants.

III. ANALYSIS OF BDD COMPLEXITY

For each variable count n between 1 and 14 inclusive and
for each term count between 1 and 2n-1, 100 SOP terms
were randomly generated and the Colorado University
Decision Diagram (CUDD) package [18] was used to
determine the BDD complexity. This process was repeated
until the BDD complexities (i.e. number of nodes) became
1. Then the experimental graphs for BDD complexity were
plotted against the product term count for each number of
variables (Fig. 2).

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251 301 351 401 451 501 551 601

Number of Product terms

B
D

D
 C

o
m

p
le

x
it

y Simulation using
CUDD

Fig. 2. Simulation results for Boolean complexity for 10 variables

The above graphs indicate that the BDD complexity in
general increases as the number of product terms increases.
This is clear from the rising edge of the curve. At the end of
the rising edge, the graph reaches a maximum complexity.
Apart from that the peak also specifies the number of
product terms (critical limit) of a Boolean function that
leads to the maximum BDD complexity for any Boolean
function with 10 variables. If the number of product terms
increases above the critical limit, as expected, the product

terms starts to simplify and the BDD complexity will
reduce. The BDD Complexity graph shown in Fig. 2
indicates that as the number of product terms increases the
complexity of the BDD decreases at a slower rate and
ultimately reaches 1 node.

IV. NEURAL NETWORK MODELING METHODOLOGY

This section covers the definition and implementation of the
Neural Network Model (NNM) for modeling the BDD
complexity.

A. Model Definition and Data Collection

The purpose of the NNM in this research was to model the
complexity of BDDs. Inputs to the NNMs were the number
of variables, and the NPT (min-terms) (Fig. 3). For the
NNM in this paper, the training and validation data sets
were obtained by the experiment done in section III.

Fig. 3. Inputs and output of the NNM

B. Data Pre-Processing

Pre-processing the training and validations sets takes a
considerable amount of resources for a practical and reliably
functioning NNM. In our research, the first data pre-
processing step was to transform the data set in such a way
that inputs have equitable distribution of importance. In
other words, the larger absolute values of an input should
not have more influence than the inputs with smaller
magnitudes. The need of such equitable distribution can be
explained with the set of figures shown below. Fig. 4 shows
the raw (original) data for 2 to 14 variables.

Fig. 4. Raw (untransformed) data

Notice that the plots for 2- to 9-variables are hardly visible
when all variables are plotted on the same scale. If the data
were presented to the NN for training in this case, only 10-
to 14- variable cases could be learnt by the NN and 2- to 9-

ACCEPTED: A. Beg, P. Chandanna, and A. Assi, "Modeling the Behavior of BDD Complexity Using Neural Networks,"
in 4th IASTED International Conference on Circuits, Signals, and Systems, San Francisco, CA, USA, 2006.

variables values could be ignored. So in order to provide
similar importance to all variable values (2 to 14), we
performed a logarithmic transformation of the product terms
(min-terms) and complexity (number of nodes) inputs. The
resulting data is plotted in Fig. 5. As we can see now all
different plots (from 2 to 14 variables) are in similar ranges
and make it easier for NN to learn them.

In order to ‘use’ or ‘run’ a trained NN, de-normalization and
de-transformation has to be done to restore the predicted
outputs to the original ranges. Steps employed in ‘training’
and ‘running’ the network are summarized here:

1. Steps for Training the NNM:

a) Take logarithm of actual values of the inputs and output

b) Train the NN with values from step (a)

2. Steps for Using/Running the NNM:

a) Take logarithm of the actual values of the input

b) Present the values from step (a) to the NNM

c) Apply anti-logarithm to the output of the NNM to get the
actual result

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Product terms (log)

B
D

D
 C

o
m

p
le

x
it

y
 (

lo
g

)

2 var

14 var

Fig. 5. Log-scaled (transformed) data

D. NN Training and Testing for BDD Complexity

We used an NN-modeling software package called Brain
Maker (version 3.75 for MS-Windows [19] to create and
test our NNMs. Brain Maker’s back-propagation NNs were
fully connected, meaning all inputs were connected to all
hidden neurons, and all hidden neurons were connected to
the outputs. The activation function for the hidden and
output layers was a sigmoid function. The difference
between the network’s actual output and the desired output
was treated as the error to be minimized.

We had acquired a total of 19044 data sets during our
simulations of Boolean functions (already described in
Section 3). From the complete data set, we used 17313 sets
(~90% of 19044) for training the NNM and the remaining
1731 sets (~10% of 19044) for validating the NNM. The
validation data set allowed us to verify that the NNM was
able to make predictions accurately with the data not 'seen'
during the training phase. We per-formed the training cycles

(also called epochs) until 95% of the training data sets were
learnt with less than 5% Mean Squared Error (MSE)
compared to 25% error in [16], [17].

A general rule is that as the number of hidden layers
increases, the prediction performance goes up, but only up
to a certain point, after which the NNM performance starts
to deteriorate [19]. To find the optimum topologies for our
NNMs, we experimented with up to 3 hidden layers; each
layer consisted on a different number of neurons. The
details of some of our NNMs experiments are listed in Table
1. We chose a 5-layer NNM (#8 in the table) with 5 neurons
in each of its hidden layers. This configuration provided
nearly the same training accuracy as its much larger 3-layer
counterparts (#9 and #10).

 TABLE 1: CONFIGURATION & TRAINING STATISTICS *

• Brain Maker training parameters: Training tolerance = 0.05; testing
tolerance = 0.05; learning rate adjustment type = heuristic. The training
accuracy is a function of initial weights which are automatically assigned
by Brain Maker. 'Facts Learnt' means the number of training facts that were
learnt by the NNM with <5% error; and 'Facts Not Learnt' means the
training facts that did not fulfill the <5% error criteria [17].

E. NN Modeling Results and Analysis

Although NNMs are quite interpolative in nature, they tend
to be less prone to noisy data than analytical or statistical
models [15]. We used an arbitrary set of values for number-
of-variables and NPT and used the NNM to predict the
number of nodes (BDD complexity).

Fig. 6 indicates the comparison for experimental results and
NNM predictions of BDD complexity for 10 variables. It
can be inferred that the NNM result provides a very good
approximation of the BDD complexity.

ACCEPTED: A. Beg, P. Chandanna, and A. Assi, "Modeling the Behavior of BDD Complexity Using Neural Networks,"
in 4th IASTED International Conference on Circuits, Signals, and Systems, San Francisco, CA, USA, 2006.

0

20

40

60

80

100

120

140

160

1 101 201 301 401 501 601

Number of Product terms

 B
D

D
 C

o
m

p
le

x
it
y Simulation using

CUDD

Neural Network
Model

Fig. 6. Complexity analyses of Simulation / Neural network models for 10

variables

The same work has been repeated for Boolean functions
with 2 to 15 variables. Fig. 7, 8 and 9 illustrate experimental
and predicted NNM results for 7, 12 and 14 variables,
respectively.

Fig. 10 shows the efficiency of the proposed NNM, which
produces very close fit as the mathematical model [10] for
the prediction of BDD complexity. It can be inferred that the
NNM was able to match the experimental curve with
minimum error for most of the product terms.

1

10

100

1 14 27 40 53 66 79 92 105 118 131 144

Number of Product terms

B
D

D
 C

o
m

p
le

x
it

y

Simulation using
CUDD
Neural Netiwork
Model

Fig. 7. Complexity analyses of Simulation / Neural network models for 7

variables

1

10

100

1000

1 161 321 481 641 801 961 1121 1281 1441

Number of Product terms

B
D

D
 C

o
m

p
le

x
it

y

Simulation using
CUDD

Neural Network
Model

Fig. 8. Complexity analyses of Simulation/ Neural network models for 12

variables

1

10

100

1000

10000

1 501 1001 1501 2001 2501 3001 3501

Number of Product terms

B
D

D
 C

o
m

p
le

x
it

y

Simulation using
CUDD

Neural Network
Model

Fig. 9. Complexity analyses of Simulation / Neural network models for 14

variables

0

20

40

60

80

100

120

140

160

1 76 151 226 301 376 451 526 601

Number of Product terms

B
D

D
 C

o
m

p
le

x
it

y

Simulation using CUDD

Neural Network Model

Mathematical Model

Fig. 10. Comparison with mathematical model

V. CONCLUSION

In this work, we have proposed a new BDD complexity

prediction methodology based on NN as another alternative

to the CUDD simulation and the mathematical models

presented by the same authors. The advantages of the

proposed approach are: (1) NNM is relatively more robust

and fast as compared to other methods and (2) NNM is a

single integrated model for different number of variables

and number of product terms. The results show the

applicability of NNs to the area of BDD complexity. We see

a close match for the CUDD simulation with minimum

errors for the calculation of the BDD complexity. The NNM

was capable of providing useful clues about the complexity

of the final design, which will leads to a great reduction in

time complexity for digital circuit’s designs. Future work

will extend to the NNM for wider range of variables to

verify the proposed method with real benchmark circuits.

REFERENCES

[1] K. Priyank. “VLSI Logic Test, Validation and

Verification, Properties & Applications of Binary

Decision Diagrams. Lecture Notes,” Department of

Electrical and Computer Engineering University of

Utah, Salt Lake City, UT 84112.

ACCEPTED: A. Beg, P. Chandanna, and A. Assi, "Modeling the Behavior of BDD Complexity Using Neural Networks,"
in 4th IASTED International Conference on Circuits, Signals, and Systems, San Francisco, CA, USA, 2006.

[2] M. Thornton and V.S.S. Nair. “Iterative Combinational

Logic synthesis Techniques using Spectral Data,”

Technical report, Southern Methodist University, 1992.

[3] S. Minato. “Binary Decision diagrams and Applications

for VLSICAD,” Kluwer Academic Publishers,

Dordrecht, 1995.

[4] S. B. Akers “Binary Decision Diagram,” IEEE Trans.

Computers, Vol. 27, pp. 509-516, 1978.

[5] R. E. Bryant “Graph−Based Algorithm for Boolean

Function Manipulation,” IEEE Trans. Computers, Vol.

35, pp. 677-691, 1986.

[6] P. E. Dunne, and W. van der Hoeke “Representation

and Complexity in Boolean Games,” proc. 9th

European Conference on Logics in Artificial

Intelligence, LNCS 3229, Springer-Verlag, 2004,pp.

347-35.

[7] N. Ramalingam, S. Bhanja “Causal Probabilistic Input

Dependency Learning for Switching model in VLSI

Circuits,” proceedings of ACM Great Lakes

Symposium on VLSI, 2005, pp. 112-115.

[8] S. Bhanja, K. Lingasubramanian and N. Ranganathan

“Estimation of Switching Activity in Sequential

Circuits using Dynamic Bayesian Networks,”

proceedings of VLSI Design 2005, 2005, pp. 586-591.

[9] M. Raseen, P.W.C. Prasad and A. Assi “Mathematical

Model to Predict the Number of Nodes in an ROBDD,”

The 47th IEEE Inter. Midwest Symposium on Circuit

and Systems (MWSCAS), 2004, Vol. III, pp. 431-434.

[10] M. Raseen, P.W.C. Prasad, and A. Assi “An Efficient

Estimation of the ROBDD’s Complexity,” accepted for

Publication in Integration - the VLSI journal, Elsevier

Publication, May 2005.

[11] P.W. C. Prasad , M. Raseen and S. M. N. A.

Senanayake “XOR/XNOR Functional Behavior on

ROBDD Representation,” Proc. of 14th IASTED Inter.

Conf. on Applied Simulation and Modeling, 2005, pp.

115-119.

[12] M., Caudill “AI Expert: Neural Network Primer,”.

Miller Freeman Publications, 1990.

[13] K. Y. Siu, V. P. Roychowdhury and T. Kailath

“Discrete Neural Computation – A theoretical

Foundation,” Prentice Hall, 1995.

[14] I. Wegener “The Complexity of Boolean functions,”

Wiley and Sons. Inc., 1987.

[15] I. Parberry “Circuit Complexity and Neural Networks,”

MIT Press (1994).

[16] L. Franco, "Role of function complexity and network

size in the generalization ability of feed-forward

networks", Lecture Notes in Computer Science, v 3512,

Computational Intelligence and Bioinspired Systems:

8th International Workshop on Artificial Neural

Networks, IWANN 2005, Proceedings, 2005. p 1-8.

[17] L. Franco, M. Anthony, "On a generalization

complexity measure for Boolean functions", IEEE

Conference on Neural Networks, Proceedings, v 2,

2004 IEEE International Joint Conference on Neural

Networks – Proceedings, 2004, p 973-978.

[18] F. Somenzi “CUDD: CU Decision Diagram Package,”

ftp://vlsi.colorado.edu/pub/, 2003.

[19] “Brain Maker – User’s Guide and Reference Manual,” 7th

ed., California Scientific Software Press, Jun. 1998.

ACCEPTED: A. Beg, P. Chandanna, and A. Assi, "Modeling the Behavior of BDD Complexity Using Neural Networks,"
in 4th IASTED International Conference on Circuits, Signals, and Systems, San Francisco, CA, USA, 2006.

