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Abstract - This research work proposes a new method to 
estimate the Binary Decision Diagram (BDD) complexity. A 
feed-forward back-propagation neural network (NN) is used 
and a large number of randomly generated single output 
Boolean functions have been considered. Experimental results 
show good correlation between the theoretical results and those 
predicted by the NN model (NNM), which will give insights to 
the complexity of Very Large Scale Integration 
(VLSI)/Computer Aided Design (CAD) designs. This model 
demonstrates the ability of NNs to provide reliable 
classification of BDD complexity.  

I. INTRODUCTION  

The efficient representation and manipulation of Boolean 
functions is important for many algorithms in a wide variety 
of applications in digital circuits. In particular, many 
problems in Very Large Scale Integration (VLSI) and 
Computer Aided Design (CAD) for digital circuits can be 
expressed as a sequence of operations performed over a set 
of Boolean functions [1]. 

With the rapid increase of the amount of circuitries on a 
single chip, there is a need for greater optimization and 
efficiency in the design process [2]. Boolean function 
representation has direct influence on the computation time 
and space complexity of digital circuits.  

During the last two decades, BDDs have gained great 
popularity as efficient method for representing Boolean 
functions [3]. BDD in general is a direct acyclic graph 
representation of Boolean functions proposed by Akers [4] 
and further generalized by Bryant [5]. In many applications, 
the efficiency of BDD representations is determined by the 
size of the BDD defined as the number of nodes in the BDD 
for a given Boolean function. The success of this technique 
has attracted researchers in the area of VLSI CAD systems 
[3]. Evaluation of the space complexity of Boolean 
functions can be performed by determining the area 
complexity of the BDD. It will be useful to have an 
estimation of the BDD complexity prior to making decisions 
on the feasibility of the design. There have been a lot of 
research works [6], [7], [8] done on the estimation of 
combinational and sequential circuit parameters from the 
exact Boolean function describing the circuit. Mathematical 
models to predict the complexity of Boolean functions and 
XOR/XNOR min-terms were introduced in papers [9], [10], 
[11]. 

NNs have proven their usefulness in the area of pattern 
recognition and prediction applications [12]. Apart from this 
lot of research has been done on the computational 
properties of NNs [13], [14]. The measure of efficiency of 
the circuit have been addressed in relation with the area of 
circuit implementation [15], where the complexity of 
Boolean functions is analyzed in terms of their 
implementation using different kind of circuits, from those 
with simple SOP, to feed forward neural network with 
threshold functions. In recent times some research has 
covered the topic of Boolean function complexity using NN 
learning process. For example, generalization ability of NNs 
was presented in [18], [19] but the authors only considered 
Boolean functions of 4 and 8 variables. 

The main objective of this paper is to introduce a BDD 
complexity estimation methodology based on NNs for a 
wide range of variables. The resulting model will enable the 
design feasibility and performance to be analyzed without 
building its complete BDD. This model has produced 
competitive results against the mathematical prediction of 
the BDD complexity. In the second section, we review the 
previous works done by the same authors on the estimation 
of BDD complexity. The proposed NNM for the estimation 
of BDD complexity is explained in the third, fourth and fifth 
sections. Finally in section six, we conclude our paper.  

II. PREVIOUS WORK 

In this section we will briefly describe the results achieved 
by the authors for the estimation of BDD complexity. 

A. Relation between the Size of a Boolean function and the 
BDD Complexity 

The complexity of the ROBDD mainly depends on the 
number of nodes represented by the BDD. Experiments 
were done in [9], [10] to analyze the complexity variation in 
BDDs. The experimental and equation graph (Fig. 1) shows 
that the complexity of the BDD can be modeled 
mathematically by (1).  
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Fig. 1. Simulation / Mathematical BDD Complexity for 11 Variables 

 

1)( +⋅⋅= ⋅− γβα NPTeNPTNN             (1) 

where NN is the number of nodes that represents the 

complexity of the BDD, NPT is the number of non-

repeating product terms in the Boolean function,α , β  and 

γ  are three constants. 

III. ANALYSIS OF BDD COMPLEXITY 

For each variable count n between 1 and 14 inclusive and 
for each term count between 1 and 2n-1, 100 SOP terms 
were randomly generated and the Colorado University 
Decision Diagram (CUDD) package [18] was used to 
determine the BDD complexity. This process was repeated 
until the BDD complexities (i.e. number of nodes) became 
1. Then the experimental graphs for BDD complexity were 
plotted against the product term count for each number of 
variables (Fig. 2).  
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Fig. 2. Simulation results for Boolean complexity for 10 variables 

The above graphs indicate that the BDD complexity in 
general increases as the number of product terms increases. 
This is clear from the rising edge of the curve. At the end of 
the rising edge, the graph reaches a maximum complexity. 
Apart from that the peak also specifies the number of 
product terms (critical limit) of a Boolean function that 
leads to the maximum BDD complexity for any Boolean 
function with 10 variables. If the number of product terms 
increases above the critical limit, as expected, the product 

terms starts to simplify and the BDD complexity will 
reduce. The BDD Complexity graph shown in Fig. 2 
indicates that as the number of product terms increases the 
complexity of the BDD decreases at a slower rate and 
ultimately reaches 1 node. 

IV. NEURAL NETWORK MODELING METHODOLOGY 

This section covers the definition and implementation of the 
Neural Network Model (NNM) for modeling the BDD 
complexity. 

A. Model Definition and Data Collection  

The purpose of the NNM in this research was to model the 
complexity of BDDs. Inputs to the NNMs were the number 
of variables, and the NPT (min-terms) (Fig. 3). For the 
NNM in this paper, the training and validation data sets 
were obtained by the experiment done in section III. 

 

 

Fig. 3. Inputs and output of the NNM 

B. Data Pre-Processing 

Pre-processing the training and validations sets takes a 
considerable amount of resources for a practical and reliably 
functioning NNM. In our research, the first data pre-
processing step was to transform the data set in such a way 
that inputs have equitable distribution of importance. In 
other words, the larger absolute values of an input should 
not have more influence than the inputs with smaller 
magnitudes. The need of such equitable distribution can be 
explained with the set of figures shown below. Fig. 4 shows 
the raw (original) data for 2 to 14 variables.  

 

Fig. 4. Raw (untransformed) data 

Notice that the plots for 2- to 9-variables are hardly visible 
when all variables are plotted on the same scale. If the data 
were presented to the NN for training in this case, only 10- 
to 14- variable cases could be learnt by the NN and 2- to 9-
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variables values could be ignored. So in order to provide 
similar importance to all variable values (2 to 14), we 
performed a logarithmic transformation of the product terms 
(min-terms) and complexity (number of nodes) inputs. The 
resulting data is plotted in Fig. 5. As we can see now all 
different plots (from 2 to 14 variables) are in similar ranges 
and make it easier for NN to learn them.  

In order to ‘use’ or ‘run’ a trained NN, de-normalization and 
de-transformation has to be done to restore the predicted 
outputs to the original ranges. Steps employed in ‘training’ 
and ‘running’ the network are summarized here:  

1. Steps for Training the NNM:  

a) Take logarithm of actual values of the inputs and output  

b) Train the NN with values from step (a) 

 

2. Steps for Using/Running the NNM:  

a) Take logarithm of the actual values of the input 

b) Present the values from step (a) to the NNM 

c) Apply anti-logarithm to the output of the NNM to get the 
actual result  
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Fig. 5. Log-scaled (transformed) data 

D. NN Training and Testing for BDD Complexity 

We used an NN-modeling software package called Brain 
Maker (version 3.75 for MS-Windows [19] to create and 
test our NNMs. Brain Maker’s back-propagation NNs were 
fully connected, meaning all inputs were connected to all 
hidden neurons, and all hidden neurons were connected to 
the outputs. The activation function for the hidden and 
output layers was a sigmoid function. The difference 
between the network’s actual output and the desired output 
was treated as the error to be minimized.  

We had acquired a total of 19044 data sets during our 
simulations of Boolean functions (already described in 
Section 3). From the complete data set, we used 17313 sets 
(~90% of 19044) for training the NNM and the remaining 
1731 sets (~10% of 19044) for validating the NNM. The 
validation data set allowed us to verify that the NNM was 
able to make predictions accurately with the data not 'seen' 
during the training phase. We per-formed the training cycles 

(also called epochs) until 95% of the training data sets were 
learnt with less than 5% Mean Squared Error (MSE) 
compared to 25% error in [16], [17].  

A general rule is that as the number of hidden layers 
increases, the prediction performance goes up, but only up 
to a certain point, after which the NNM performance starts 
to deteriorate [19]. To find the optimum topologies for our 
NNMs, we experimented with up to 3 hidden layers; each 
layer consisted on a different number of neurons. The 
details of some of our NNMs experiments are listed in Table 
1. We chose a 5-layer NNM (#8 in the table) with 5 neurons 
in each of its hidden layers. This configuration provided 
nearly the same training accuracy as its much larger 3-layer 
counterparts (#9 and #10).  

 TABLE 1: CONFIGURATION & TRAINING STATISTICS * 

 

• Brain Maker training parameters: Training tolerance = 0.05; testing 
tolerance = 0.05; learning rate adjustment type = heuristic. The training 
accuracy is a function of initial weights which are automatically assigned 
by Brain Maker. 'Facts Learnt' means the number of training facts that were 
learnt by the NNM with <5% error; and 'Facts Not Learnt' means the 
training facts that did not fulfill the <5% error criteria [17].  

 
E. NN Modeling Results and Analysis 

Although NNMs are quite interpolative in nature, they tend 
to be less prone to noisy data than analytical or statistical 
models [15]. We used an arbitrary set of values for number-
of-variables and NPT and used the NNM to predict the 
number of nodes (BDD complexity).  

Fig. 6 indicates the comparison for experimental results and 
NNM predictions of BDD complexity for 10 variables. It 
can be inferred that the NNM result provides a very good 
approximation of the BDD complexity.  
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Fig. 6. Complexity analyses of Simulation / Neural network models for 10 

variables 

The same work has been repeated for Boolean functions 
with 2 to 15 variables. Fig. 7, 8 and 9 illustrate experimental 
and predicted NNM results for 7, 12 and 14 variables, 
respectively. 

Fig. 10 shows the efficiency of the proposed NNM, which 
produces very close fit as the mathematical model [10] for 
the prediction of BDD complexity. It can be inferred that the 
NNM was able to match the experimental curve with 
minimum error for most of the product terms. 
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Fig. 7. Complexity analyses of Simulation / Neural network models for 7 

variables 
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Fig. 8. Complexity analyses of Simulation/ Neural network models for 12 

variables 
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Fig. 9. Complexity analyses of Simulation / Neural network models for 14 

variables 
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Fig. 10. Comparison with mathematical model 

V. CONCLUSION 

In this work, we have proposed a new BDD complexity 

prediction methodology based on NN as another alternative 

to the CUDD simulation and the mathematical models 

presented by the same authors. The advantages of the 

proposed approach are: (1) NNM is relatively more robust 

and fast as compared to other methods and (2) NNM is a 

single integrated model for different number of variables 

and number of product terms. The results show the 

applicability of NNs to the area of BDD complexity. We see 

a close match for the CUDD simulation with minimum 

errors for the calculation of the BDD complexity. The NNM 

was capable of providing useful clues about the complexity 

of the final design, which will leads to a great reduction in 

time complexity for digital circuit’s designs. Future work 

will extend to the NNM for wider range of variables to 

verify the proposed method with real benchmark circuits. 
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