
Object-Oriented Behavioral Testing Through Trace
Generation

Anastasia Tircuit
∗

EECS Department
Tulane University

New Orleans, LA 70118

tircuit@eecs.tulane.edu

B. Belkhouche
EECS Department
Tulane University

New Orleans, LA 70118

bb@eecs.tulane.edu

ABSTRACT
One challenge in software design is ensuring that the design
meets the requirements of the user. One way to do this is
to create a prototype from the design, then devising a set of
test cases to test for the behavioral requirements. Here we
present our automated prototype generator and method for
testing behavior.

1. INTRODUCTION
It has been shown that the longer an error persists during

development, the more time and money it will cost to fix the
error [1]. If, however, we find inconsistencies and errors dur-
ing the design phase, we can correct them before they reach
the code. To that end, much work has been done on meth-
ods to test designs. Many of these are formal, systematic,
and partially automated [2, 3, 4, 5, 6, 7, 8, 9]. A typical
design analysis system will begin with a definition of some
rules for what makes a valid design. These rules may define
syntactic and semantic requirements of the design notation.
They may also identify a set of consistency requirements,
that is, places where there is some redundancy of informa-
tion, and that information must be coordinated. They will
then provide a way to test the design against these rules, to
show where the design complies and where it violates them.

Another area of design analysis is involved with ensuring
that the system does what it is intended to do. In this
situation, there is an intended behavior or set of behavioral
requirements, and we are attempting to test the design to
ensure that it meets these requirements. Several ways to
do this have been presented in the literature [3, 8, 10, 11].
Here we present our method of testing design behavior via
execution traces.

The contents of the paper are as follows. Section 2 dis-
cusses the issues of testing program behavior and how this
problem has been tackled in the literature. Section 3 presents

∗Corresponding author

our behavioral notation, based on the Communicating Se-
quential Processes (CSP) language [12]. Section 4 presents
our trace generation program. Section 5 contains the results
and conclusions.

2. CURRENT ISSUES
The basic idea is simple. We have a set of requirements for

the software system, and we have a design which is supposed
to meet these requirements. How do we ensure that this is
the case?

One variety of behavioral checking involves defining a set
of rules for how a behavior may evolve over two or more
life cycles. In this situation, the assumption is the initial
life cycle has the intended behavior already. The goal is to
ensure that the new life cycles evolve such that the behavior
remains consistent. These methods often include a set of
rules which define how the evolution may take place to insure
consistency. The next step is to provide some method to
check that the life cycles in fact agree with the rules. We
see this form of analysis in [9, 5]. A similar method is also
present in [2]. In this case the relevant design elements
are not multiple life cycles, they are multiple views of the
system.

In the case of life cycles and of multiple views, the issue
is maintenance of behavior. The issue we are interested in
is ensuring that the behavior meets its requirements. At-
tempts have been made at addressing this issue in [3, 8], by
the method of executable designs. In this case, an array of
test cases are created, then by some means, executed on the
design. In the case of [3], the method involves creating an
execution graph from the design. The test cases may then
be run on the graph. Their method is entirely manual. As
the graphs creation involves laying out loops into a series
of branching structures, the graphs are likely to become un-
wieldy given a complex system. In [8], the authors make
reference to the LOTOS SMILE simulator. They state this
may be used to create executable prototypes of their spec-
ifications written in the LOTOS notation. From the infor-
mation given, it is unclear exactly how powerful a testing
mechanism this is.

The ideal solution for comprehensive testing is to create
a fully executable prototype. In this case, the tester may
run test cases on the prototype and see exactly what its
behavior is. However, creating the prototype is often a time
consuming task. If it has all of the functionality of the final
product, it will take close to the same amount of effort to
create. As we are trying to test the behavior before reaching

that point, prototyping may not be an optimal solution.
Several approaches to prototyping attempt to scale-down
the structures created, thus eliminating part of the work
involved [10, 11]. These typically either target a small set
of critical functions, or create skeletons of all of the functions
and focus on the interface rather than the behavior.

Here we present another view of prototyping, based on
execution traces. Our method begins with two elements:

• A set of test cases to test the requirements of the sys-
tem.

• A behavioral design, written in a CSP based notation.

This system automatically generates the prototype. The
user may then test it with the test cases and ensure that the
behavior meets the requirements. Our objectives in devel-
oping our trace generation system are:

• Provide a way to test system behavior

• Minimize the overhead for the tester

• Automate the prototype generation process

3. BEHAVIORAL DESIGN VIA CSP
In an earlier paper, we presented our text based design

notation, TOODL [13]. Here we use the behavioral part of
that notation as the basis for behavioral designs and trace
generation. This behavioral notation will be discussed in
some detail.

The formalization of our method is based on Communi-
cating Sequential Processes (CSP) [12]. CSP is well suited
to the OO execution model. For each class in the model, its
behavior is described as one, or a set of, CSP processes.
These models consist of an alphabet of available events,
and the sequences which define the order they may be ex-
ecuted in. These sequences may be recursive, defining an
infinite number of possible behaviors. CSP also easily al-
lows the description of interactions between classes with its
message communication constructs. This is a distinct ad-
vantage over state-based modeling approaches. State-based
modeling does not capture the interactions between objects.
This requires the use of a separate notation to model object
interactions. When using CSP both object life history and
object interactions may be modeled with a single notation.
To address the issue of compositionality, we use the paral-
lel composition construct from CSP. Two or more processes
may be compositionally combined in this way to describe a
larger system.

To illustrate the behavioral notation, we will use a small
example. A Simple Car System is made of two classes: Car,
and Engine. For each class, we start by defining its alpha-
bet. The alphabet contains all of the events available to the
behavior. The Car general events are:

αCar = {move forward, turn on, turn off}

The alphabet is denoted by αCar. Event names are writ-
ten in lower case italic letters. We then begin to define the
sequences these events may be called in. Some possibilities
are:

Car = turn on → move forward

Car = turn off

The arrow notation (→) is a CSP operation meaning ”then”.
So we read the first sequence as: turn the car on, then move
forward.

We can combine sequences to make the object life history
(OLH) with the choice operator (|). When combining the
two sequences above, we create:

Car = (turn on → move forward | turn off)

There is no preference to which choice is taken. Anytime
an interaction with Car takes place, either of the sequences
may be chosen.

Currently both of these sequences terminate the behavior
of Car. It may turn on, then move forward, and then it will
no longer be active. We may wish to allow the Car to take
another action once it has moved forward. We do this by
placing a process name at the end of the sequence. If our
move forward sequences is written like:

Car = (turn on → move forward → Car

| turn off)

It will return to the Car behavior, and another sequence
may be chosen. This type of recursive notation allows for
many options for the behavior to be described, with only a
small written description.

During modeling, situations may occur where one wishes
to specify that an event A must be done before some other
event B. In our example, it is reasonable to require that
the turn on event comes before the Car moves. One way
to accomplish this is to create another CSP process which
becomes part of the Car behavior. We name our new pro-
cess Car1. Processes are named with capitol letters, to dis-
tinguish them from pure events. Car1’s alphabet is drawn
from the alphabet of Car. It will contain the events that
must follow a turn on event. Car1’s alphabet is:

αCar1 = {move forward, turn off}

And its OLH is:

Car1 = (move forward → Car1 | turn off)

To reach the Car1 process, it will need to participate in
an OLH sequence of the original Car process. Our new Car
OLH is:

Car = (turn on → Car1)

The behavior will begin with the OLH of Car, in this
situation we only have one choice, to turn the Car on. Once
the Car is turned on, the OLH of Car1 is now available to
the environment.

Car System is an extended car design. It contains three
additional classes: Shift, Engine, and Brake. We will use the
Engine class as an example. The Engine’s purpose is to sit
and wait for messages from the Car. It may do two things,
turn on and turn off. As it will do these only after receiving
a message, these events are incoming communication events.
Thus, the alphabet of Engine is:

αEngine = {Engine?on, Engine?off}

The ? in the event name denotes that this is an incom-
ing communication event. As the Engine’s tasks are simply

sitting and waiting, its OLH is:

Engine = (Engine?on → Engine

| Engine?off → Engine)

Engine will never terminate on its own. It will only stop
waiting for a message when the entire Car System is no
longer running.

We may complete the communication channels by adding
matching outgoing communication events to Car and Car1.
These take the form of class!event, where class is the class
that the matching incoming event is housed in. Including
an Engine!on call, the new Car alphabet will be:

αCar = {turn on, Engine!on}

We will also include this event in our sequences. Car’s
new OLH is:

Car = (turn on → Engine!on → Car1)

Car1’s new alphabet and OLH are:

αCar1 = {move forward, turn off, Engine!off}

Car1 = (move forward → Car1

| turn off → Engine!off)

As a final step, to include both the Car and Engine in the
Car System, the composition operator may be used:

Car System = (Car||Engine)

4. TRACE GENERATION

4.1 Automated Creation of Trace Generator
While the CSP model provides a formal and compact de-

scription of the behavior, we may want to observe how the
system behaves over time and verify specific behavioral test
cases. This may be done with our trace generation program.
It allows the user to see which events are available during a
point in execution, to choose an event, and see the resulting
behavior of the model.

We will illustrate the trace generation program with this
more detailed Car OLH:

OLH Car

alphabet Car = {Engine!on, turn_on, Part_Car1}

Car = (turn_on -> Engine!on -> Part_Car1)

OLH Part_Car1

alphabet Part_Car1 = {move_forward,

move_backward, Brake!press, Brake!release,

Shift!drive, Shift!reverse, Part_Car2, stop}

Part_Car1 = (move_forward -> Brake!apply ->

shift!drive -> Brake!release -> Part_Car1 |

move_backward -> Brake!apply ->

shift!reverse -> Brake!release ->

Part_Car1 | stop -> Part_Car2)

OLH Part_Car2

alphabet Part_Car2 = {Brake!release, Shift!park,

Engine!off, Brake!press, Part_Car1, Car,

turn_off, park}

Part_Car2 = (turn_off -> Brake!press ->

Shift!park -> Engine!off | park ->

Brake!press -> Shift!park -> Part_Car1)

Car

Car1

turn_on

Figure 1: This is the data structure after the initial

process is examined.

The Engine OLH has been described in the previous sec-
tion. The Shift and Brake OLHs are not included here.
They do not play a part in the trace generation.

Initially the program searches through the alphabets of
each process to identify the general events. The general
events are how the objects interact with the environment,
so these will become our user interface during trace genera-
tion. In our example, only Car, Car1, and Car2 have general
events, so these are the only processes we are concerned with
here.

For each process with general events, we examine the OLH
for sequences beginning with general processes. Car has one
sequence, and it meets the criteria:

turn on → Engine!on → Car1

We then remove the pertinent information from this se-
quence and store it in a data structure.

Event: turn_on

Next Process: Car1

In our data structure, this will be stored as the only event
choice under the Car process. In Figure 1 we see a figure
showing the data structure after the Car process is exam-
ined. It has the one available event, turn on. Paired with
turn on, is the next process available to the user, Car1. As
we examine the rest of the process, we will see how the rest
of the processes are stored in the data structure.

For Car1, there are 3 sequences which meet the criteria.
We will continue to build our data structure, creating a new
node for Car 1, and attaching its events. The new structure
may be seen in Figure 2.

Note that the next process field may contain either a re-
cursive process or a separate process. In move forward and
move backward, the next process recurses on Car1. In stop,
the next process is Car2.

In the event that a sequence does not end in a process
name, its next event field will be blank (NULL). This is
the case for the turn off event under Car2. We see the new
additions to the data structure in Figure 3.

The remaining classes will be checked in the same way for
OLH sequences which begin with general events. In this ex-
ample, none of those classes have any qualifying sequences,
so they are not present in the structure.

4.2 Using the Trace Generator
The structure illustrated in Figure 3 is used to present the

user interface in the trace generation program. The program
begins by presenting the user with all of the event choices

stop

Car1

Car2

move_backward

Car1

turn_on move_forward

Car1

Car1Car

Figure 2: This is the data structure after the Car1

process is examined.

in the first column of the table. It then instructs the user
to enter which event choice they would like. The user also
has the option of exiting out of the trace generator. Note
that the EXIT option is a function of the generator, not of
the behavior itself. The initial screen for our Car System
example is:

turn_on

EXIT

Enter an event:

Upon entering ”turn on” The user will be given the options
once the Car System is in motion. These may be seen in the
Car1 section:

move_forward

move_backward

stop

EXIT

Enter an event:

The move forward and move backward events will repeat
in this section as many time as the user desires. This is
consistent with the move forward and move backward se-
quences in Car1’s OLH. They both end in the recursive
event, Car1.

Upon entering stop, the user will be taken to the third
and final menu for this example:

turn_off

park

EXIT

Enter an event:

If the user enters park, the trace generator will return to
the Car1 menu, as the park sequence in our design ends
with the Car1 process name. If the user enters turnoff, the
trace generator program will print the trace, and offer the
user the chance to create more. Here is one trace of our
Car System:

Car1

move_forwardturn_on

Car1

move_backward

Car2

Car1

stop

park

turn_off

Car1

Car Car1 Car2

Figure 3: This is the data structure after the Car3

process is examined.

turn_on -> move_backward -> move_forward ->

move_forward -> stop -> turnoff

The user may then continue to generate traces, verifying
that the Car System behaves in the way it is intended to.

4.3 Testing the Behavior with Trace Genera-
tion

The power of trace generation become more apparent when
we add a set of test cases. The test cases may be as simple as
an informal description of the intended behavior. Something
like:

Car turns on

Car moves forward and backward

Car turns off

Car does not move until it has been turned on.

will outline the basic behavior of the Car System. The tester
can then attempt to generate traces which provide this be-
havior for the Car System. This description will also provide
a basis for a set of formal test cases later, so creating them
is not additional work for the tester.

For more formal testing, we may describe the behavior as
a set of traces. These traces should cover the required func-
tionality of the Car System. It is also helpful to test traces
which, if available, would violate unwanted Car System be-
havior.

The first list of test cases will ensure that the Car System
has some basic functionality.

Required Behavior

1. turn on → turn off

2. turn on → move forward → turn off

3. turn on → move backward → move forward → turn
off

4. turn on → park → turn off

We run these test cases on the trace generator for Car System.
We are able to generate traces that match each of these test

cases. This shows that our required behavior is actually
available in the Car System.

This second set of traces defines some behavior which we
definitely do not want in the Car System. If any of these
traces are able to be generated, it shows that the Car System
has some unwanted behavior which needs to be addressed.

Unwanted Behavior

1. turn off → turn on

2. turn off → move forward

3. turn on → turn off → move forward

When we run these three test case, there are no choices avail-
able which will generate traces with this behavior. Once
again we find that the behavior of the system is in accor-
dance with our intended behavior.

It may also be the case that we want the Car System to
have some behavior not available to us. For example:

1. turn on → turn off → turn on → turn off

If we attempt to test this behavior, we will find that once the
Car System is turned off, no other actions may take place.
We then know that our behavior needs some corrections.

5. CONCLUSIONS AND FUTURE WORK
Previously we stated our objectives as:

• Provide a way to test system behavior

• Minimize the overhead for the tester

• Automate the prototype generation process

We feel that our system has met these objectives. Our
trace generation system does provide a way to test system
behavior. It allows the tester to see what choices will be
available during execution time. The tester may choose one,
and will then see the outcome of that choice. This process
may be repeated as many times as desired to test the be-
havior of the system. The tester may also try to generate
traces of unwanted behaviors, to ensure these are not present
in the system. This method requires little additional work
from the tester. Specifying test cases is a necessary part of
software development already. Here we are only requiring
that they be specified by a certain time in the development
process. Furthermore, they need not be formal. A casual
English document outlining the desired and unwanted be-
havior is enough to test the behavior with our generation
program. The only time spent by the tester is in gener-
ating the traces and reviewing the results. Given a design
in the TOODL notation, the prototype generation is com-
pletely automated. The test need only run the utility and
they will be looking at a user interface generated from their
design. It also automatically states which actions are avail-
able, eliminating the possibility of choosing an impossible
action during trace generation.

The future of the TOODL analysis tool includes making
additions to the trace generation utility and its other design
analysis mechanisms. Futher automations may be added to
the trace generation program so that it is able to take a
number of test cases as input, process the group, then tell
the user which ones were successful. We would also like to
explore having the program generate test cases automati-
cally. Given a program with no recursion, every positive

test case could be generated. When working with recur-
sive programs, some boundries would need to be set which
defined how much recursion is allowed. Otherwise, the pro-
gram would generate test cases indefinitely. These plus other
additions will make the tool a thorough design analysis and
testing environment.

6. REFERENCES
[1] C. Kaner, J. Falk, and H. Q. Nguyen, Testing

Computer Software. International Thomson Computer
Press, second ed., 1993.

[2] A. F. Egyed, “Automatically Validating Model
Consistency During Refinement,” tech. rep.,
University of Southern California, 2000.

[3] O. Pilskalns, A. Andrews, S. Ghosh, and R. France,
“Rigorous Testing by Merging Structural and
Behavioral Uml Representations,” Proceedings of the
Sixth International Conference on the Unified
Modeling Language, 2003.

[4] G. Engels, L. Groenewegen, R. Heckel, and J. M.
Küster, “A Methodology for Specifying and Analyzing
Consistency of Object-Oriented Behavioral Models,”
8th European Software Engineering Conference Held
Jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2001.

[5] G. Engels, R. Heckel, and J. M. Küster, “Rule-based
Specifications of Behavioral Consistency based on the
Uml Meta-Model,” Proceedings of the Fourth
Iinternational Conference on the Unified Modeling
Language, 2001.

[6] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh, “Iinconsistency Handeling in
Multi-perspective Specifications,” Proceedings of the
Fourth European Software Engineering Conference,
pp. 84–99, 1993.

[7] P. Fradet, D. L. Métayer, and M. Perin, “Consistency
Checking for Multiple View Software Architectures,”
Lecture Notes in Computer Science, vol. 1687,
pp. 410–428, 1999.

[8] A. Moreira and R. Clark, “Combining
Object-Oriented Modeling and Formal Description
Techniques,” Proceedings of the 8th European
Conference on Object-Oriented Programming
(ECOOP’94), pp. 344–364, 1994.

[9] M. Schrefl and M. Stumptner, “Behavior-Consistent
Specialization of Object Life Cycles,” ACM
Transactions on Software Engineering and
Methodology, pp. 92–148, January 2002.

[10] R. Budde, K. Kuhlenkamp, L. Mathiassen, and
H. Zullighoven, Approaches to Prototyping.
Springer-Verlag, 1984.

[11] M. M. Tanik and R. T. Y. (guest editors), “Rapid
Prototyping in Software Development,” IEEE
Computer Soc. Computer, vol. 22, 1990.

[12] C. Hoare, Communicating Sequential Processes.
Prentice-Hall, 1985.

[13] B. Belkhouche and A. Nix, “Formal Analysis of
Uml-based Designs,” Proceedings of the International
Conference on Software Engineering Research and
Practice, SERP ’04, vol. I, pp. 220–226, June 2004.

