
Full and Autonomic Mobility Management for Mobile Agents

Leila Ismail and Boumediene Belkkhouche

College of IT
United Arab Emirates University

P.O.Box 17555, Al-Ain, UAE
Email: leila@uaeu.ac.ae, b.belkhouche@uaeu.ac.ae

Abstract—Cooperation among autonomous mobile agents
requires mechanisms to efficiently support communication.
The interaction between mobility and communication and the
constant re-localization of mobile agents raise several mobil-
ity management issues. To address these issues, we develop
mechanisms for a full and autonomic mobility management
of agents within an underlying model. In addition of being
efficient and transparent to agents, our mechanisms take into
account the interaction between mobility and communication
among agents.

I. INTRODUCTION

The use of mobile agents [1] as a model to structure dis-
tributed systems and applications has drawn a great attention
in the past few years. Even though numerous researchers
have been investigating the development of mobile agents
systems [5], [6], [8], [10]–[12], most of the emphasis is
focused on the communication infrastructure, leaving much
of the mobility management efforts to be handled at the
application level. In particular, we notice the absence of
a full management of agent mobility. We refer to full
management as the capacity of the system to move an
agent and to manage the effects of this mobility on the
communication links with other agents in the system. Full
management frees the programmer and provides greater
autonomy to agents. In this paper, we propose mechanisms
for the management of agent mobility. In addition to being
transparent to agents’ applications, our mechanisms resolve
the problem of the tension between communication and mo-
bility with the introduction of dedicated run-time structures
to support communication of mobile agents.

The rest of the paper is structured as follows. In section
II we provide a brief background for this work. In section
III, we present the localization problem of mobile agents.
In section IV we describe the relationship between naming,
localization, and communication in a mobile agent system.
Requirements on communication are discussed in section V.
In section VI, we describe the system architecture supporting
our mechanisms. We conclude in section VII.

II. BACKGROUND

With the growing use of Internet applications by a wide
community, distributed applications, such as information

search on the web and electronic commerce applications
[13], [14] are widely used. The use of the Internet as a
platform to execute distributed applications introduces two
major problems: the heterogeneity of machines and the lack
of efficiency of the applications. First, we need to write
programs that execute everywhere on the Internet. Second,
applications slow performance becomes a major problem,
as applications components are distributed over a large-
scale network, and may run on a relatively slow distributed
environment.

Mobile agent based programming [1] is an emerging
paradigm for structuring distributed applications over the
Internet. An agent is a process that can move with its code
and execution context from site to site to perform its task.
Mobile agents are mainly intended to address autonomy and
efficiency problems of applications distributed over large
scale and slow networks. They reduce communication costs
by moving computation to the host on which the target data
reside [15].

The research in the area of mobile agents programming
is highly active. Several projects, such as Telescript [5],
D’Agents ([6], [7]), Aglets ([8], [9]), Mole [10], MOA
[11], and Voyager [12], have developed execution envi-
ronments for mobile agents. Theoretical models based on
the π calculus (e.g., [19]) treat communication at a very
high level. They usually distinguish syntactically between
location-dependent and location-independent communica-
tion. In either case a special process acting as as manager
is needed to coordinate communication. In general, the
proposed solutions address only partially the mobility issue
of agents. In particular a full management of mobility is not
handled by these systems.

In this paper, we call a client agent the agent that initiates
a communication link with another agent, the server agent.
As an example of full management capabilities of mobile-
agents based systems, if a mobile client agent A wishes
to obtain a service from a mobile server agent B, then
this communication should take place independently of B’s
possible mobility. Full management consists then of two
major services:

• Agent localization. A mobile agent can move from
one site to another during its lifecycle. The agent

2009 First International Conference on Advances in Future Internet

978-0-7695-3664-4/09 $25.00 © 2009 IEEE

DOI 10.1109/AFIN.2009.13

31

localization service consists of the mechanisms which
allow finding the current location of an agent.

• Message tracking. A message can be sent to an agent
that moved to another location, or is in the process of
moving. The message tracking service consists of the
mechanisms which allow delivering messages to their
destination. Messages should not be lost.

In Mole [10], messages received by a mobile agent site
and which are intended for a mobile agent in process of
moving are not accepted. Mole does not suggest solutions
for the communication links between the mobile agent and
its clients. Management of communication links become the
responsibility of the applications agents. MOA [11] provides
another approach for the mobility management of agents.
The approach is based on the migration of the communi-
cation channels established between the client agents and
the server agent which moves and with which the clients
communicate. Client agents receive an exception message
for every communication with an agent whose movement
has been initiated. It is the programmer’s responsibility to
deal with these exceptions messages, i.e., by locating the
mobile agent and re-sending the messages. The Aglets [9]
platform allows communications between agents using their
corresponding proxies. A proxy becomes invalid if an agent
moves. Then, it becomes the programmer’s responsibility to
locate the agent by communicating with a finder repository.
The Mobile Agent System Interoperability Facility (MASIF)
([3], [4]) is a group of industries specifying a standard for
interoperable mobile agents systems across the world. The
MASIF specifies an interface for transferring and locating
agents. However, it does not specify full management of
agents mobility. In particular, the MASIF requires that a
mobile agent system support the get MAFFinder() opera-
tion. This operation retrieves a reference to the localization
server MAFFinder which is responsible for locating agents.

Based on the current literature, we classify mobility
management mechanisms into two categories:

• Mechanisms based on the migration of communication
channels. In these mechanisms the agent informs all its
collaborators of its intention to move. Subsequently, all
the messages addressed to the agent are not delivered
directly to the agent, but stored by the receiving agent
site in a vector of non-read messages. Once an intent to
move is communicated by an agent to the mobile agent
system, the latter sends an acknowledgment and closes
all its communication channels with the agent in the
process of moving. When the agent requesting a move
receives an acknowledgement from all its clients, the
agent is suspended from reading messages. Whenever
a client agent communicates with the mobile agent,
an exception is returned to the client application. The
client has to deal with the exception at the program-
ming level. All the communication channels are re-

established after the move is completed successfully.
This solution does not handle well scalability, that
is, as the number of communicating agents and the
corresponding communication channels increase, its
efficiency suffers. In addition, each server agent has
to keep a list of all the client agents with which com-
munication channels are established. The management
of this list degrades seriously the overall performance
of the mobile agent system.

• Mechanisms based on a complete separation between
mobility and localization. In these mechanisms the mo-
bility of an agent is supported by the system. However,
the localization is a supplementary service offered by
the mobile agent platform. The programmer of agents
can then use this service to locate a mobile agent. This
solution requires programming efforts at the application
level for agent localization. We argue that programmers
would rather concentrate on the application logic rather
than on the programming efforts of services that ought
to be provided by the system.

When designing our agent mobility mechanisms, we con-
sider the following requirements:

• Transparency in maintaining communication links via
transparent localization. A client agent must be able to
maintain its communication links with an agent server
despite the server agent mobility. The re-localization of
mobile agents must be transparent to clients.

• Transparency in managing messages. The management
of messages for an agent in transit must be transparent
to client agents. Delivery of messages must be guaran-
teed.

• Management efficiency. The mechanisms for the man-
agement of messages must be devised in a way to
minimize the management overhead.

Existing mobile agents systems propose partial solutions
to the above problems. To ensure communication with a
mobile agent, the system must include proper designation,
mobility and localization mechanisms. As mobile-agents
systems are interesting in large-scale distributed environ-
ments like the Internet, efficiency should be considered while
designing these mechanisms.

The mechanisms we propose take into consideration the
above requirements. These mechanisms provide agents in a
transparent fashion the ability to communicate regardless of
mobility.

III. LOCALIZATION PROBLEM

The following issues motivate our design choices for the
localization mechanisms of mobile agents:

• Transparency. Applications should not include
localization-related instructions. The localization and
re-localization processes are implemented within the
underlying mobile agent system. The programmers of

32

mobile agents-based applications should not include
code to locate agents explicitly.

• Efficiency. The localization mechanisms should not
generate a large number of system messages exchanged
through the network.

• Modularity. The localization mechanisms should be
implemented in a separate layer from the agent’s appli-
cation code. Therefore, the programmer would concen-
trate on the application programming logic rather than
on localization issues.

• Portability. The localization mechanisms should be
general and applicable to all mobile agents systems.
The mechanisms should not include features that are
operating-system-dependent or language-dependent so
that they can be ported to any mobile agent system.

IV. NAMING AND LOCALIZATION

Naming is an integral part of the mobility management
mechanisms. The choice of a naming scheme for mo-
bile agents impacts drastically the mobility management
of agents. In this section, we present our solution for the
naming issues. We consider an agent as a group of objects
where the root object represents the entry points to other
objects internal to that agent. The root object represents the
agent itself.

A. Naming and Localization

To be able to communicate with a particular agent, we
need to give the agent a name. Generally, in object-oriented
languages, the language associates a name with every created
object. Such a name is local to the execution context of
the process creating the object. An agent is assimilated to
an object in a global networked environment. Therefore, a
naming mechanism is needed to identify an object in a global
context. A name associated with an agent should allow for
the establishment of a communication link with that agent.
In other words, it should allow locating that agent.

We divide the naming mechanisms into two categories:
relative naming scheme and absolute naming scheme. In the
relative naming scheme, the agent name has only a meaning
in the current execution context of the agent. The main
advantage of having relative names is their length. Relative
names have small length thus saving storage. However,
if the agent moves, then there is a necessity to have a
mechanism which locates an agent within its new destination
execution context. Forwarding pointers have been tradition-
ally used for migrating objects in Operating Systems and
later in distributed systems [16]. In the forwarding pointer
mechanisms, when an agent moves, it leaves behind it its
current location. For instance, if a server agent moves from
site1 to site2, it will leave on site1 the address of site2. A
client agent wishing to communicate with that server agent
must send its message along with the forwarding pointers
until the message request reaches the current server agent

location. The reply message will have to follow the same
chain back to the requesting client agent. This algorithm
is very costly as messages may have to traverse a long
chain of the forwarding pointers. The possibility of race
conditions increases, as the agent might move during this
localization time. This algorithm can be optimized by send-
ing with the reply message the current location of the server
agent. Consequently, the chain length is shortened for future
communication requests. This algorithm must also provide
a garbage collection algorithm to delete invalid forwarding
pointers.

In the global naming scheme, an agent is given a name
which is globally unique. We classify the localization mech-
anisms using a global naming scheme into two classes of
algorithms: the mechanisms using the forwarding pointers
algorithm, and the mechanisms using a centralized localiza-
tion server, which has the latest location of a mobile agent.
Aglets [9] uses a naming scheme based on the notion of a
proxy. The proxy includes a unique global name associated
with an agent. A proxy is returned to an agent creator when
an agent is first created. This proxy becomes invalid when an
agent moves. The clients have the possibility to re-validate
the proxy by consulting a localization server which updates
the proxy with the current location of an agent. Voyager [12]
identifies its agents by a globally-unique name. In order to
find the current location of an agent, the forwarding pointers
algorithm is used.

In our mechanisms, we propose a naming scheme that
integrates the relative and absolute naming schemes. For
each agent, represented by a graph of objects, a global name
is generated for the root object of the graph, while a relative
name is generated for an internal object to the graph. A
global name for an agent depends on the location of the
home site creating that agent. More precisely, an agent name
has the following format:

home-site-address:home-site-port-number:id
Where home-site-address and home-site-port-number are

the address and the port number of the mobile agent sys-
tem site where the agent is created, respectively. id is an
automatically-generated serial number identifying the agent
in a unique way within its creation site. Each internal object
to the agent graph of objects is then identified globally by
using the name of the agent and the agent local identifier.

The combination of the address of the home site of the
agent and its name provides the corresponding localization
server with a unique address. Consequently, there is no
need for an application to know explicitly about an agent
localization server. Our design choice of integrating the
identity of the creation site of the mobile agent in the agent
global name allows the mobile agent system to have the
address of the localization server responsible for locating
the agent.

We view the Internet as consisting of regions. A re-
gion is defined as a network domain for sites under the

33

same authority. For efficiency and robustness, we include
one localization server per region instead of having one
global centralized localization server. This is consistent
with MASIF specifications for mobile agents [2]–[4]. Each
localization server keeps up-to-date information about the
location of agents created within its region. This mech-
anism is less costly from a client’s perspective than the
forwarding pointer mechanism. In particular, in a dynamic
system, where agent movements are frequent, the forwarding
pointers chain becomes very long making its traversal an
unacceptable overhead. The use of a localization server
requires a communication message between the migrating
agent and its localization server after each movement. Such
a communication results is less traffic and no forwarding
pointers.

V. REQUIREMENTS FOR AGENT COMMUNICATION

When designing our mechanisms for the management of
agent mobility, the following issues are considered:

• Management of messages sent to an agent which has
moved. The messages sent from other agents to an
agent which has moved from its original location should
not be lost.

• Management of messages sent to an agent in the
process of moving. When an agent is in moving state,
its state is saved. Such an agent is unable to accept
messages sent to it. Again, these messages should not
be lost.

To solve the first problem, two techniques have been
used in the literature of mobile agents: the forwarding
technique and the exception technique. In the forwarding
technique, messages sent to an agent follow the agent to
its current migrated location [11]. Each message is first
sent to a localization server, which in turn sends it to
the current location of the agent. A serious drawback of
this technique is that messages are first addressed to the
localization server, which processes them and re-sends them
to their corresponding agents in their new locations. The
localization server becomes then a bottleneck in the system.
The exception technique, used by Aglets [9], consists of
sending an exception to the client agent sending the message.
On reception of the exception, the client agent application
must locate the agent using a localization server and sends
the message again. The main disadvantage of this algorithm
is the lack of transparency to client applications, because
localization is being taken care at the application level.

To solve the second problem, two techniques have been
used in the literature of mobile agents: the forwarding tech-
nique and the exception technique. In this context, the for-
warding technique consists of keeping the messages received
by the destination site and retransmitting those messages
once the agent has completed its mobility. MOA [11] and
Aglets [8] use this technique. The main disadvantage of this
technique is the burden imposed on the destination server

forcing it to store and manage messages for all its visitor
agents in a global network. The exception technique consists
of returning an exception to the client sending the message.
Here, it is the client application responsibility to locate the
agent and retransmit the message. The main problem of this
technique is that client applications are forced to handle the
exception message at the application level.

VI. ARCHITECTURE

In this section, we present our proposed architecture for
the management of agent mobility in a mobile agent system.

A. Overall Architecture

Figure 1. Overall Architecture of a Mobile Agent Platform

A mobile agent platform includes the following compo-
nents as show in figure 1:

• Agent. An agent is a mobile object which can move
from site to site under its own control to achieve tasks
on these sites. In general, in order to move to a site,
an agent must explicitly invoke a move(site) message.
An agent is composed of its code, its execution thread,
and its data which correspond to the values of the agent
global variables. When an agent moves from one site
to another, it continues its execution on the destination
site at the instruction which immediately follows the
invocation of the move operation. To communicate
with other agents, agents invoke methods which are
translated into a message by the underlying messaging
system.

• Execution Environment. Each site, as part of the mobile
agent platform, runs an execution environment. This ex-
ecution environment implements facilities for creating
agents, executing them concurrently, suspending them,
destroying them, etc.

• Messaging System. A messaging system is part of an
agent execution environment. It provides facilities for
agents to communicate both locally and remotely. It es-
tablishes communication links between communicating
agents. It is constantly aware of the status of links and
when these are broken, it takes the necessary actions to
establish new links for re-routing the messages to their
destination.

34

• Localization Server. There is one localization server per
region. Each localization server has up-to-date infor-
mation about the locations of the agents created within
its region. When an agent is created, it is registered
by a naming server and then its name and location
information are registered with the localization server.

B. Agent Communication

In our proposal, agents communicate using method invo-
cations as in ORB (Object Request Broker) [18]. A com-
munication link between a client agent and a remote server
agent is translated to a link between the client agent stub
and the server agent skeleton. A remote method invocation
in our architecture is similar to the Java Remote Method
Invocation (RMI) [17] (see figure 2).

Figure 2. Communication Infrastructure for Mobile Agents

To establish a link between a client agent and a server
agent, the stub in our architecture includes the following
information:

• The unique global name of the mobile server agent, in
addition to the relative names of the internal objects
that are to be access by the client. These are needed by
the mobile server agent messaging system for messages
delivery.

• The current address of the mobile server agent which
is obtained from the localization server. This address is
transparently obtained when the client agent consults
a naming service which associates an agent human-
friendly symbolic name to its corresponding unique
global name.

When a client agent communicates with a server agent,
the address in the client stub is used to send the message to
the destination server agent. In addition to the message that
should be delivered to the server agent, the message also
includes the global name of the agent to which the message
is to be delivered, and the name of the object internal whose
method to be invoked.

C. Mobile Agent State Automaton

When messages are received by the recipient site mes-
saging system system, those message must be delivered to
their destination agents. Whether to immediately deliver the

Figure 3. States of a Mobile Agent

messages to the agent or not depends on the agent state. The
mobile agent system should know whether an agent is in a
stable state allowing it to receive messages, or it has moved,
or it is in process of mobility. Consequently, messages can
be dealt with accordingly. In particular a message cannot
be delivered to an agent which is in process of mobility.
Otherwise, an inconsistent state of the agent would move.
Therefore, we tag an agent with a dynamic state which
changes during its lifecycle. Figure 3 shows the automaton
state transition of an agent state during and after moving.

• Movable. The agent is in a stable state. Neither the
agent, nor any object internal to that agent is executing
an operation. Then, if the agent calls for a move
operation, the underlying mobile agent system will
execute the operation and the agent then moves. When
an agent is created, it is in the Movable state.

• IM (Impossible Mobility). This state corresponds to an
agent in in process of executing operations (called by
other agents). The agent cannot move. Otherwise, an
inconsistent copy of the agent would move.

• InM (In Mobility). The agent is in process of moving.
When an agent decides to move, its state changes from
form a Movable state to an InM state. A message cannot
then be delivered to an agent in the InM state. The
mobile agent system should then return to the caller
agent the new address of the agent. No operations
should be executed by an agent during its move.

Note that not delivering messages to agents during moves
allows for a consistent state to progress. In addition, an agent
should not start to save its state before completing all the
operations which are in the process of execution.

35

D. Localization Algorithm

LOCATE(ServerAgentj)
1 reply ←send(locateRequest, LSRi)
2 if reply
3 then
4 establishLinkWithServerAgent(reply)
5 else
6 if reply IsException
7 then send(locateRequest, LSRj)

As stated previously, there is one localization server per
region. Agents created within a region should inform their
home localization server of the location of their destination.
Thus, a localization server within a region has an up-to-date
information about its agents current locations. When a client
agent wishes to communicate with a mobile server agent,
the messages go through the client agent messaging system.
The client messaging system will then send a localization
request to the localization server which is within the same
region as the client agent. If the mobile server agent is
co-located with the client agent, a communication link is
established between agents and local communication takes
place. If the agent is not available within the client agent
region, then a localization request is sent to the localization
server of the mobile server agent. As stated this localization
server has an up-to-date information about the mobile server
agent current location. A communication link is established
between agents. Agents communicate remotely.

E. Re-localization Algorithm

Figure 4. Communication Links between Mobile Agents

As stated previously, when a client agent locates a mobile
server agent, a communication link is established between
them. However, when an agent moves, then this communi-
cation link is broken. In other words, the current address
of the agent server within the client agent stub is no more
valid. Subsequent messages which are sent over a broken
link should not be lost. In our mechanisms (see figure 4),
we propose to dynamically update the location information

of the mobile server agent within the client agent stub in a
lazy way rather than in an eager way. An eager update means
that the localization information within the client agent stub
is immediately updated. This is done immediately after each
movement of the mobile server agent that the client is com-
municating with. Although an eager approach contributes
in keeping the link permanently valid, it has scalability
and performance issues. As the number of client agents
increases, all the stubs of the client agents should be updated
before after agent movement, even if some of the clients
would not need to communicate with the migrated server
agent anymore. On one hand, this increases the number of
messages exchanged over the network before each agent
move. On the other hand, the mobile server agent has to keep
a list of all the clients with which it is communicating. The
management of this list, i.e., adding and removing clients
would impose a performance problem in case of frequent
changes of the number of clients. Consequently, the eager
mechanisms are not adequate for a dynamic environment
like the mobile agent system, in which agents can join a
group of agents for exchanging information and then leave
the group in a dynamic way.

SENDMESSAGE(Message, ServerAgentj)
1 � The client’s stub has an information
2 � about the server agent’s location
3 � which may be outdated.
4 reply ←send(Message, ServerAgentj, location)
5 if reply IsResult
6 then deliverToClient(reply)
7 if reply IsLocalizationtype
8 then if reply NOTexception
9 then establishLinkWithServerAgent(reply)

10 send(Message, ServerAgentj)
11 else location ←send(locateRequest, LSRj)
12 Send the message to the agent.
13 Goto 4.

In the lazy approach (see above algorithm), when a client
agent messaging system sends a messages to the messaging
system of a mobile server agent which has moved, an
exception message is returned to the client agent stub by
the mobile agent underlying system. The client agent stub
localization module will then deal with the exception by
sending a localization request to the localization server to
find the mobile server agent. The localization server is
available on the creation site of the mobile server agent. The
client agent stub localization module will detect the address
of the localization server from the agent global name which
is stored within the client’s stub. This name includes the
address of the creation site of the mobile agent, where a
localization server can be found. We assume that the global
unique name of the agent includes an indication about the
address of its localization server.

36

F. Agent in Process of Mobility State

The question here is: what happens when the messaging
system of a client agent sends a message to the messaging
system of a mobile server agent which is in the process of
movement? Our approach guarantees that the message is not
lost, but delivered to its destination. An exception message is
sent from the messaging system of the mobile server agent to
the messaging system of the client reporting the broken link.
Consequently, the former will issue a localization request
to locate the agent in the process of movement. During
the time the server agent is in the process of moving, the
localization server cannot provide the new location of its
requested agent. Two mechanisms can be use here. The
first mechanism called a polling mechanism, consisting of
systematically sending the localization request until a valid
reply is obtained. The polling mechanism solution results
in a considerable number of localization messages sent over
the network with the inherited network delay problem. This
delay increases in case the setup of the agent move takes
a long time, for instance due to the waiting time for the
current operations that the agent should terminate before
its movement. Also the delay increases if the server agent
state is large; the agent state must be loaded by the mobile
agent system before the agent can move. Therefore, we
propose that only one localization request be issued to the
localization server. The localization server will block the
localization request until a valid reply can be sent to the
messaging system of the client agent.

G. Reception of Messages

When a message is sent from the client’s messaging
system to the messaging system of the mobile server agent,
the latter will consult the server agent’s state.

RECEIVEMESSAGE(Message, ServerAgentj, ClientAgenti)
1 � The server’s skeleton Knows about
2 � the server agent’s current state.
3 state ←checkState(ServerAgentj)
4 if state isstable
5 then
6 � BrokenLink
7 deliver to ServerAgentj(Message)
8 if state isInMAndCreatedByLocalRegion
9 then reply ←send(LocalizationRequest, LSRJj)

10 send(reply , ClientAgenti)
11 else
12 � The server agent is not
13 � created locally
14 send(exception, ClientAgenti)

We identify three possible cases (see above algorithm):

• The mobile server agent is stable. In this case, the
message is delivered to the mobile server agent by its
messaging system.

• The mobile server agent has moved. In this case, a ”link
broken” message is sent from the messaging system of
the mobile server agent to the messaging system of the
client agent server.

• The mobile server agent is in process of moving. There
are two cases here.

– In the first case, the mobile server agent which is
in process of moving does not belong to the same
domain as the messaging system on which it is
running i.e it is a visitor agent. A ”link broken”
message is then sent from the recipient messaging
system to the client agent messaging system. The
”broken link” message is dealt with by the localiza-
tion module of the client agent’s messaging system
as described in previous sections.

– In the second case, the mobile server agent which
is in process of mobility belongs to the same
domain as the messaging system on which it is
running. In this case, a valid localization reply is
sent back to the client agent’s messaging system,
which in turn resubmits the message.

VII. CONCLUSION AND PERSPECTIVES

With the wide spread use of Internet by a large pub-
lic, new classes of applications have appeared such as
information search on the web and electronic commerce.
The apparition of such types of applications makes the
Internet a programming platform, where the heterogeneity
of the underlying machines and the efficiency of a large-
scale distributed environment have to be considered. Mo-
bile agent based programming is an emerging paradigm
for structuring distributed applications over the Internet,
which is considered a solution to the efficiency problems
of distributed applications over the Internet. While many
mobile agents systems have been developed, only partial
solutions have been advanced to support full management
of agent mobility and communication. To efficiently manage
mobility and communication involves addressing two types
of mechanisms: the localization of mobile agents and the
management of messages among mobile agents.

In this paper, we proposed mechanisms for the localization
of mobile agents and the management of messages. Unlike
existing mechanisms, ours mechanisms are more efficient
and transparent to clients’ applications. We also described
an optimization to our algorithms by eliminating some
exceptions sent to clients’ localization module. Clients’
applications will receive a valid reply about the current
location of mobile server agents.

REFERENCES

[1] C. Harrison, D. Chess, and A. Kershenbaum. ”Mobile Agents:
Are They a Good Idea?”. IBM Research Division, T. J. Waston
Research Center, Yorktown Heights, New York, March 1995.
Proceedings of the ACM Operating System Review, 33(3),
August 1999, pages 7-13.

37

[2] Open Management Group. ”Mobile Agent Facility Specifica-
tion”. OMG TC Document cf/96-08-01, August 1996.

[3] Open Management Group. ”Mobile Agent Facility Specifi-
cation”, January 2002. http://www.omg.org/docs/formal/00-01-
02.pdf.

[4] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B.
Friedman, D. Kosaka, D. Lange, K. Oshima, C. Tham, S. Vird-
hagriswaran and J. White. ”MASIF. The OMG Mobile Agent
System Interoperability Facility”. Lecture notes in computer
science, ISSBN 0302-9743, Springer Verlag, 1998.

[5] J. E. White. ”Telescript Technology: The Foundation for the
Electronic Market Place”. General Magic Inc., Mountain View,
CA.

[6] Robert S. Gray, George Cybenko, David Kotz, and Daniela
Rus. ”Agent Tcl. Itinerant Agents: Explanations and Examples
with CDROM. William Cockayne and Michael Zypa (editors),
Manning Publishing and Prentice Hall, 1997.

[7] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko and
D. Rus. ”Mobile agents in distributed information retrieval”.
Intelligent Information Agents, edited by Matthias Klusch,
Springer Verlag, chapter 15, pp. 355-395, 1999.

[8] D. Lange and O. Mitsuru. ”Programming and Deploying Java
Mobile Agents with Aglets. Addison-Wesley Pub Co, ISBM:
0-201-32582-9, August 1998.

[9] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono.
Aglets Specifications 1.1 Draft 0.65. September 1998.
http://www.trl.ibm.com/aglets/spec11.htm.

[10] J. Baiumann, F. Hohl, K. Rothermel, M. Straer. ”Mole,
Concepts of a Mobile Agents System”. World Wide Web, vol.
1, No. 3, pp. 123-137, 1998.

[11] D. S. Milojici, W. LaForge, D. Chauhan. ”Mobile Objects
and Agents, Design, Implementation and Lessons Learned”.
Distributed systems Engineering IEEE, pp. 1-14, 1998.

[12] G. Glass. ”Object Space Voyager - The Agent ORB for Java”.
Lecture Notes in Computer Science, no.1368, pp. 38-55, 1998.

[13] L. Moser. ”Electronic Commerce using Mobile Agents Tech-
nology”. 1998-1999 Final Report for MICRO Project 98-107
for implementing MAgNET (Mobile agent for Networked
Electronic Trading).

[14] P. Dasgupta, N. Narasimhan, L. Moser, and P. Melliar-Smith.
”MAgNET: Mobile Agents for Networked Electronic Trading”.
IEEE Transactions on Knowledge Data Engineering 11(4):509-
525 (1999).

[15] L. Ismail, D. Hagimont. ”A Performance Evaluation of the
Mobile Agents Paradigm”. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 1999 ISBN = ”1-58113-238-7,
0-201-48561-3 (Addison Wesley Longman)”, pp. 306-313.

[16] A. Tanenbaum, M. van Steen. ”Distributed Systems: Princi-
ples and Paradigm”. ISBN: 0130888931, 2001.

[17] A. Wollrath, R. Riggs and J. Waldo. ”A Distributed Object
Model for the Java System”. Computing Systems, vol. 9, no.
4, pp. 291-312, 1996.

[18] R. Grimes. ”DCOM Programming: A guide to creating
practical applications with Microsoft’s Distributed Component
Object Model”. ISBN 1-861000-60-X. Wrox Press, 1997.

[19] P. Sewell, P. Wojciechowski, and B. Pierce, ”Location-
Independent Communication for Mobile Agents: a Two-Level
Architecture”. In Internet Programming Languages, H. Bal,
B. Belkhouche, and L. Cardelli (eds.), LNCS 1686, pp. 1-31,
Springer, 1999.

38

