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Direct Implementation of Abstract Data Types from
Abstract Specifications

BOUMEDIENE BELKHOUCHE, MEMBER,

Abstract—The development of correct specifications is a critical task
in the software development process. This paper describes an alter-
native approach for the development of specifications. The approach
relies on a specification language for abstract data types and a synthe-
sis system. The system is capable of translating an abstract data type
specification into an executable program. This process defines an al-
ternative methodology that provides the necessary tools for the early
testing of the specifications and for the development of prototypes and
implementation models.

Index Terms—Abstract data types, abstract model, implementation
models, language translation, prototyping, specifications, specnﬁcauon
testing, synthesis, transformation rules.

I. INTRODUCTION

CRITICAL phase of the software life cycle is the

specification phase. The objective of the specifica-
tion phase is to provide a formal description of the func-
tionality of the system to be developed, and to serve as a
basis for communication, design, testing, and verification
of the software product. The significance of software
specification is analogous to that of blueprints used in
other engineering disciplines. However, unlike other en-
gineers, software engineers have not yet fully adopted the
use of specifications on a large scale. This attitude is partly
due to the lack of software aids for developing specifica-
tions. Indeed, the production of accurate specifications is
a complex task that requires automated tools. These tools
include testing and debugging facilities to validate the
specifications before the design process is started. As re-
ported by Boehm [1], over 60 percent of the errors un-
covered in several operational software systems were due
to shortcomings in the specifications themselves. This
high percentage of errors contributes significantly to the
unreliability and prohibitive cost of software. It is there-
fore desirable that support tools be available to help soft-
ware developers define error-free specifications.

Several tools and methodologies have been proposed to
minimize software development problems. The concepts
of stepwise refinement and hierarchical decomposition at-
tempt to provide the software engineer with guidelines on
how to solve a difficult problem through the use of ab-
straction levels and successive refinement stages. These
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manual methodologies emphasize a problem-solving dis-
cipline, but do not prevent the introduction of errors into
the resulting product. Program testing and validation are
required thereafter to assess the equivalence between the
developed system and its specification. This validation
process is arduous and needs to be performed every time
a new software product is developed or modified. Con-
sequently, even though these techniques help reorganize
and master the complexity of the problem, they do not
constitute a safeguard against the injection of new errors
in the intermediate designs. The synthesis system de-
scribed in this paper is intended to alleviate these prob-
lems. The automated system is a formalization of the
stepwise refinement and hierarchical decomposition pro-
cesses. Such a formal methodology guarantees the cor-
rectness of the programs generated by the system. That
is, given that the transformation rules that translate a
specification into an implementation are proved correct,
any product generated by the synthesis process is also cor-
rect. Proving the correctness of the transformation rules
is a one-time activity.

Issues associated with the specification phase were ad-
dressed in the research reported in this paper through the
definition of a specification language and a processor for
the language [2]-[4]. This processor is capable of auto-
matically generating implementations of abstract data
types from the associated high-level specifications. Sev-
eral benefits accrue from the integration of this tool within
an existing software environment. Such a system provides
the necessary support for testing the specifications, and
thus can be used as a validation tool. The system also
allows the software developer to experiment with, and
study different prototyes and implementation models that
are automatically synthesized. Currently, the synthesis
system is written in PL/I on a Honeywell 68/80 running
under MULTICS. The input to the synthesizer is an ab-
stract data type specification. The specification is ana-
lyzed, and if legal, PL/I or Pascal code that implements
the specification is generated. The implementation and the
necessary interfaces are then available for use by other
programs. The early availability of implementations con-
stitutes a definite advantage for error detection and precise
specification.

The innovations that this approach introduces in soft-
ware engineering are:

1) the human effort is mainly devoted to the require-
ments and specification phases;
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2) the automatically generated prototypes are equiva-
lent to the specifications;

3) the tesing of the specifications is greatly facilitated
by the early availability of the generated prototypes;

4) the early feedback from the user can be obtained
through observation of the behavior of the prototypes; and

5) the software life cycle defined by the synthesis sys-
tem is shorter and less error-prone than the traditional
software life cycle.

II. THE SPECIFICATION LANGUAGE

The language design was influenced by ALPHARD [5],
[6] and Berzins’ language [7]. The reason for not adopting
either language is because neither one provided the fea-
tures necessary for automated support. The ALPHARD
specification language was designed to provide a basis for
manual program verification with no provisions for ma-
chine processing. Berzins’ specification language was
partially designed to illustrate the abstract model ap-
proach to specifications of abstract data types with an em-
phasis on human readability rather than machine process-
ing.

The language model described here provides four basic
abstract data structures and associated operations. These
mathematical structures are: set, sequence, Cartesian
product, and discriminated union [8]. To define an ab-
stract data type, the specification developer chooses an
abstract representation and defines the semantics of the
abstract data type in terms of the operations available on
the abstract representation. In contrast to the algebraic ap-
proach [9]-[11], this model is considered to be construc-
tive and more amenable to proofs of correctness [12]-[14].
This advantage is due to the relationship between the ab-
stract model approach and programming language con-
cepts which allows a straightforward formulation of the
mapping function from the concrete to the abstract object
[15].

A. General Structure of a Type Specification

The specification of an abstract data type in the lan-
guage describes the syntactic structure, and defines the
functionality (i.e., semantics) of the abstract data type op-
erations. Once defined, an abstract data type specification
is viewed differently according to the nature of its usage.
We identify three kinds of usage: 1) the using programs;
2) the synthesis system; and 3) the program verifier. Pro-
grams using the abstract data type need to interface with
the specification. These programs must have access to the
syntax part and knowledge of the semantics of each op-
eration. The synthesis system uses the specification as in-
put, determines its legality, and implements it. The pro-
gram verifier needs both the specification and cor-
responding implementation to demonstrate their equiva-
lence. In all aspects, the specification is used as an un-
ambiguous communication vehicle among users of varied
needs and requirements. The specification language must
thus have sufficient expressive power to capture a type
specification in a form that is suitable for all users.
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TYPE  <name, generic parameters>

INTERFACE

<syntax of operations>

LET <abstract representation>

<initialization>

INITIALLY

OPERATIONS <semantics of operations>

RESTRICTIONS <list of restrictions>

END

<name>

Fig. 1. General structure of a type specification.

The unit of the specification language is the type spec-
ification. Fig. 1 shows the general structure of a type
specification.

As can be seen from Fig. 1, a type specification consists
of seven sections which are as follows.

1) Type Header Section: This section defines the ab-
stract data type name that will serve as the type identifier
to be used for type declaration. Generic parameters, if
any, are associated with the type identifier. These param-
eters extend the definition of the type to a type schema.
Language restrictions imposed on generic parameters are:
1) generic parameters must be simple identifiers; 2) ge-
neric parameters must be of language-defined type; 3) the
operations available on generic parameters are automati-
cally inherited; and 4) the values of generic parameters
must be known at compile time. Restrictions on the ge-
neric parameters are stated in the where clause following
the type header. These restrictions are global to the spec-
ification, and must be enforced for all the operations. This
global view makes the restrictions behave as invariants
[6]. Each restriction is evaluated statically. The results of
the evaluation must be a true value, otherwise an excep-
tion is signaled. Restrictions that may be expressed in the
language are of three types. These restrictions are: 1) a
range restriction which constrains the range of values a
generic parameter can assume; 2) a type restriction which
constrains a generic parameter of type type to certain
types; and 3) a property restriction which provides a list
of properties of a generic parameter.

2) Interface Section: This section is the syntactic spec-
ification of the abstract data type. The types and the op-
erations that may be exported to other specifications or
programs are listed in this section. The information pro-
vided by the interface section is made visible outside the
type specification to allow for proper usage of the type,
and to enforce statically the legal interface between using
programs and implementing programs. The available in-
formation consists of a list of type names and a list of
operation headers. Each header describes the syntax of
the operation which defines the name of the operation,
and the type and position of each of the operation param-
eters. Imported types are listed in the imports subsection.

3) Abstract Representation Section: This section is
used to define an abstract type structure in terms of user-
or language-defined types by using structuring concepts
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supported by the specification language. These structur-
ing concepts are called abstract data structures and consist
of sequences, sets, tuples, and discriminated unions. The
primitive structures furnish the basic building blocks upon
which other abstract data types are built. The abstract rep-
resentation does not necessarily imply a particular imple-

mentation. The principal function of the representation is -

to provide mechanisms that facilitate the composition. and
hierachical definition of abstract data types.

4) Initialization Section: This section is used to assign

an initial value to each variable declared as an abstract
data type. The initial value is computed statically. The
evaluation of the initialization expression must yield a
value that is type-compatible with the variable being ini-
tialized. The value must also satisfy any restriction on the
type. A violation will result in an exceptional condition
that is handled by signaling such a state if a condition
handler is defined; otherwise execution is aborted and
control is returned to the using program.

5) Operations Section: This section is used to define
the semantics of each operation. Each operation consists
of a header which contains the operation name and the
parameters, and an operation body in which the effects of
the operation are described. The behavior of an operation
is expressed in terms of initial and final states. The input
(output) assertion specifies the initial (final) state by de-
fining the relationship that must hold among the initial
(final) state components. The assertion is basically a re-
lational expression and constitutes the fundamental con-
struct of the specification language. Using Hoare’s nota-
tion, the body of an operation is specified as:

1P}s{0}

where P is the input assertion, Q the output assertion, and
§ is the list of statements that enforce the input assertion
and satisfy the output assertion. Note that the list of state-
ments is not provided in the specification but is rather syn-
thesized by the synthesis system. The operations section
provides the semantic definition of the abstract data type.
An operation can be either a procedure that operates
through side-effects, or a function that returns a value.

The operation header is basically similar to the one de-
scribed in the interface section except that the type of the
operation (function or procedure) is stated explicitly, and
the parameters are named. An operation body is com-
posed of three parts: 1) an identifier list part; 2) an op-
tional input assertion part; and 3) an output assertion part.
The identifier list part provides the output variables whose
values are to be determined to satisfy the output assertion
part.

An input assertion part describes the relationship that
must hold among input values, and thus must be evaluated
upon entry to the operation. The result of the evaluation
defines the meaning of the assertion, and may be either
true or false. A true value means that the input assertion
has been satisfied, and evaluation can proceed to the next
assertion; otherwise, the required relation does not hold,

651

and a state violation is posted by notifying the appropriate
error handler.

An output assertion part describes the relationship that
must hold among the output values in the final state. The
evaluation of an output assertion yields a true value if the
assertion is satisfied, and a false value otherwise. An out-
put assertion that is not satisfiable implies an error in the
semantic specification of the operation.

The exceptional behavior of abstract data types is han-
dled by the restrictions section. A restrictions section con-
sists of a list of zero or more restrictions. Each restriction
is made of an operation identifier, and the keyword sig-
nals followed by a condition handler identifier. Each of
the type operations can assume two different states upon
interpretation. These two states are distinguished by the
truth value of the input assertions.. A normal state corre-
sponds to a satisfied input assertion, and an exceptional
state corresponds to its nonsatisfaction. Three sequential
actions are performed to handle the exceptional state
properly. These actions are as follows.

a) detection: the results of the input assertion eval-
uation provide the means by which the exception is de-
tected;

b) signaling: a predefined signal is generated upon
detection; and

¢) handling: remedial action is initiated. After com-
pletion, control is returned to the end of the operation
where the exception occurred.

The specification language supports detection and sig-
naling. The target language implementation must provide
exception handling mecahnisms. It is therefore the re-
sponsibility of the using programs to handle exceptions
that might arise due to the violation of some input asser-
tion.

6) Restrictions Section: This section is used to asso-
ciate exceptions with operations that can potentially result
in an exceptional state. A restriction consists of the op-
eration identifier followed by the keyword signals fol-
lowed by the name of the exception.

7) Tail Section: This section delimits the type specifi-
cation. The identifier that follows the keyword end must
match the type identifier that appears in the type header.

B. Declarations

A declaration is the means by which a variable acquires
a type. Typing features in a language help in determining
the legal context of the use of variables. These variables
can be either declared within the using programs or within
the type specification. In both cases, the processing of a
declaration is performed at compilation time.

1) Variable Declaration in a Using Program: An ab-
stract data type specification acts as a type definition fa-
cility within the using programs [16]. The specification
must be made available before the type can be used in
declarations. A use clause is required in the using pro-
grams to provide the necessary information on the generic
abstract data type.
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The abstract data type declarations involve the follow-
ing actions:

a) type definition statement: the result of a type def-
inition is to instantiate an abstract data type specification.
Each new instantiation is given a different name and in-
volves the association of concrete values with generic pa-
rameters;

b) declaration statement: the variable declaration
statement associates a specific instantiated type with an
identifier;

c) generic type elaboration: the results of evaluating
the actual parameters in a declaration statement are bound
to the formal parameters. Given that a generic type spec-
ification is only a template, the role of the elaboration of
a generic type is to emit code that realizes the semantics
of the instantiated type specification. Note that code is
emitted only once for identical type instantiation;

d) type binding: the elaborated type specification is
bound to the variable that appears in the declaration state-
ment; and

e) initialization: the variable being declared is ini-
tialized with the value of the expression of the initializa-
tion clause in the type specification.

2) Variable Declaration in a Type Specification: An
entity in a type specification can be declared as a generic
parameter, exported type or operation, record component,
representation component, formal parameter of an oper-
ation, return value of a function, or local variable. In each
case, the declaration provides type and scope informa-
tion.

Parameters of a type specification are of two types: ge-
neric parameters which parameterize the abstract data
type; and formal parameters which appear as parameters
of the type specification operations. A mode is associated
with each formal parameter. There are three modes [17]:
in, out, and inout. An in parameter is a parameter that
has an initial value that can not be modified within the
body of the operation. An out parameter is a parameter
that must acquire a value within the operation before exit.
An inout parameter is a parameter that has an initial value
and that can be modified. Generic parameters are in pa-
rameters. The parameters of a function are in parameters,
and its return value is an out parameter. All other param-
eters acquire an explicit mode.

III. AN ILLUSTRATIVE EXAMPLE

An example of a university library database is used to
illustrate the different components of a type specification
(see [18] for a complete description). The intent of this
example is to focus on the general structure without undue
difficulty. A university library database is an object whose
behavior is defined by the following operations:

check out: check out a copy of a book from the li-
brary;

return: return a copy of a book to the library;

add a book: add a copy of a book to the library;
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remove one book: remove a copy of a book from
the library;

remove all books: remove all copies of a book from
the library;

list__books: list titles of all books in the library by a
particular author;

which__ patron: find out which patron (borrower) last
checked out a particular copy of a book;

which__books: find out which books are currently
checked out by a particular patron.

Fig. 2 exhibits the specification of a library. The line
numbers that appear in the figure are provided for refer-
ence only; they are not part of the type specification.

A. Discussion

Each of the seven sections of the type specification ex-
ample is explained in detail below.

1) Type Header: Line 1. The name of the type speci-
fied is ‘‘library.’” No generic parameter is associated with
this abstract data type.

2) Interface: Lines 2-13. The interface section has
three parts. The first part (line 3) lists the types that can
be exported. ‘‘library’’ and ‘‘list _of books’’ are the
only exported types in this example. The second part (lines
5-12) lists the operations that can be exported. ‘‘add
__book,”” “‘check__out,”” ‘‘return__book,’’ etc., are the
exported operations. The syntax of each operation is de-
scribed. For example, the ‘‘add_book’’ operation is a
procedure and has three parameters: an inout parameter
of type ‘‘library,’’ an in parameter of type ‘‘book,’” and
an in parameter of type ‘‘patron.’’” The third part (line 13)
is the imports subsection where all user-defined types used
within this specification are listed. Two abstract data
types, ‘‘book’’ and ‘‘patron,’’ are imported. The speci-
fication for these two abstract data types appears in the
Appendix.

3) Representation: Line 14. The abstract data type
““library’’ is structured as a set with elements of type
“‘book.”’

4) Initialization: Line 16. A variable declaration al-
ways causes initialization of the variable through activa-
tion of the initialization clause. Here, a variable of type
““library’’ will be initialized with the empty library value.

5) Operations: Lines 17-41. This section constitutes
the semantic specification of the abstract data type ‘‘li-
brary.”” The functionality of the operations is described.
Each operation has two components: 1) a header (lines
18, 21, 24, 27, 30, 33, 36, and 39); and 2) a body (lines
19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-38, and
40-41). An operation header is made of the operation
name, the operation type, and the formal parameters. For
example, in the header on line 18, the operation name is
‘“add. _book,’’ the operation type is ‘‘procedure,”’ and
the formal parameters are ‘‘lib>’ which is an inout param-
eter of type ‘‘library,”” ‘‘bk’’ which is an in parameter of
type ‘‘book,”” and ‘‘user’’ which is an in parameter of
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1 type library;
2 interface
3 types: library, list_of_books;
4 operations:
5 add_book (inout library; in book; in patron);
3] check_out (inout library; inout book; in patron, inout patron);
7 return_book (inout library; inout book; in patron; inout patron);
8 remove_one_book (inout library; in book; in patron);
9 remove_all_books (inout library; in book; in patron);
10 list_books (in ftibrary; in patron; in name) returns list_of_books;
11 which_patron (in library; in book; in patron) returns patron;
12 which_books (in library; in book; in patron; in patron) returns list_of_books;
13 imports: book, patron;
14 let library = set (b: book);
18 list_of_books = set (x: book);
16 initially library = {library: };
17 operations
18 add_book: procedure (inout lib: library; in bk: book; in user: patron)
19 find lib such that |ib = [1ib’ + bk;
20 where patron$is_staff (user) & ~“(there exists b in |ib: book3equal (b, bk));
21 check_out: procedure (inout lib: library; inout bk: book; in user: patron; inout pat: patron)
22 find lib such that lib = lib’ - bk + book8check (bk, pat) and pat = patronScheck (pat)
23 where patron$iimit (pat) & (there exists b in lib: bookSequal (b, bk))

& patronSis_staff (user);
24 return_book: procedure (inout lib:library; inout bk: book; in user: patron; inout pat: patron)
26 find lib such that lib = lib’ - bk + bookSreturn (bk) and pat = patronSreturn (pat)
26 where patrondis_staff (user);
27 remove_one_book: procedure (inout lib: library; in bk: book; in user: patron)
28 find lib such that lib = lib> - {library: b in lib’: bookSequal (b, bk)}
29 where patronSis_staff (user) ;
30 remove_all_books: procedure (inout lib: library; in bk: book; in user: patron)
31 find lib such that 1ib = lib> - {library: b in lib’: bookSmatch (b, bk)}
32 where patron8is_staff (user);
33 list_books: function (in Iib: library; in user: patron; in author_name: name) returns (Ib: list_of_books)
34 find Ib such that Ib = {list_of_books: b in lib’: book8author (b, author_name)}
36 where patron8is_staff (user);
36 which_patron: function (in lib: library; in b: book; in user: patron) returns (pat: patron)
37 find pat such that pat = book$borrower (b)
38 where patronSis_staff (user);
39 which_books: function (in lib: library; in b: book; in user, pat: patron) returns (bl: list_of_books)
40 find bl such that bl = {list_of_books: b in Iib’: patronSequal (pat, book8borrower (b))}
41 where patrondis_staff (user);
42 restrictions
43 add_book signals cant_add;
44 check_out signals check_out_failure;
45 remove_one_book, remove_all_books, list_books signals no_priviledge;
46 which_books, return_book, which_patron signals no_priviledge;
47 end library.

Fig. 2. University library database specification.

type ‘‘patron.’’ The operation body consists of an op-
tional list of input assertions, and a list of output asser-
tions. The input assertion lists are: ‘‘patron$is__ staff &
~ (there exists b in lib: book$equal (b, bk))’’ on line 20;
“‘parton$limit (pat) & (there exists b in lib: book$equal
(b, bk))’’ on line 23; “‘parton$is__staff(user)’’ on lines
26, 29, 32, 35, 38, and 41. The output assertion list, ‘‘lib
= 1ib’ + bk,’’ on line 19 is lib equals the old value of
lib with bk added to it. Syntactically, an input assertion

is introduced by the where keyword, and an output as-
sertion is introduce by the find keyword.

6) Restrictions: Lines 42-46. The restrictions section
is used to take alternative actions in case an input asser-
tion is not satisfied. For example, if the input assertion
‘‘patron$is__staff (user)’’ on line 26 evaluates to false,
then the restriction that corresponds to the ‘‘return’’ op-
eration is activated, i.e., the restriction ‘‘return signals
no__ privilege’’ on line 46 is executed.
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Contour E1
library type et
list_of_books integer et
add_book proc eo
check_out proc eo
remove_one_book proc ec
remove_al!_books | proc eo
list_books tunct eo
wnich_patron funct eo
which_books funct eo
book type it
patron type it
Contour E2
lib library io—fp
bk book i=-fp
user patron i-fp
cant_add cond global
Pl = <19 ,E2>
gp: generic parameter funct: function it: import type
et: export type proc: procedure
eo: export operation io=fp: inout formal parameter
i-fp: in formal paraometer globol: global within the type

Fig. 3. Execution snapshot.

7) Tail: Line 47. This line consists of the keyword end
and the identifier ‘‘library’’ which matches the identifier
that appears after the keyword type on line 1.

B. An Execution Snapshot

A simplified version of the contour model [19] is used
to display an execution snapshot of the library type spec-
ification. The invocation of an abstract data type opera-
tion creates a new active environment, which is repre-
sented by a contour E;, a processor state P/, and a set of
cells. Pl is an <ip,ep> pair (ip = instruction pointer,
and ep = environment pointer). Each cell represents a
variable declaration. Assume the operation ‘‘add__book’’
is invoked. Fig. 3 displays the contour before execution
of line 19.

The snapshot shows a total environment made of two
nested contours. Contour E; corresponds to the global en-
vironment of the abstract data type specification shown in
Fig. 2. The eleven cells in E; correspond to the variables,
types, and operations that are known globally in the type
specification. Contour E, is nested within E, and corre-
sponds to the local environment of the operation ‘‘add-
__book.”’ The local variables are ‘‘lib,”” ‘‘bk,’’ ‘‘user,”’
and ‘‘cant__add,’’ each represented by a cell in E,. Since
‘‘add__book’’ is the active environment, the value of the
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processor PI points to line 19 of ‘‘add__book’” and to the
contour E,.

On line 19, there are two references to ‘‘lib’’ and one
reference to ‘‘bk.”” All these references are to local vari-
ables, and are resolved by searching the name space (i.e.,
the set of cells) in E,.

IV. SYNTHESIS SYSTEM OVERVIEW

The system function is to convert an abstract data type
specification into a concrete executable program. The
specification undergoes incremental refinements until all
the specification constructs are completely transformed
into programming language constructs. The transition
from one intermediate version to another is the result of
the application of a set of transformation rules. Interme-
diate versions constitute partially developed programs
composed of contructs of different levels of abstraction.
The final version of the program is expressed in a proce-
dural language. The transformation activity is not a mono-
lithic process, but is accomplished in several stages. These
stages are as follows.

1) Syntactic and Semantic Analysis: The result of this
activity is a parse tree. All overloaded operators are re-
solved, and the operand attributes are propagated.

2) Type Decomposition: Abstract data types are de-
fined hierarchically. The result of the type decomposition
activity is to build a directed acyclic graph that expresses
explicitly the hierarchical and structural relationship
among the different types of the specification.

3) Specification Transformation: Transformation rules
are used to translate constructs of the specification into
abstract constructs of an algorithmic intermediate lan-
guage. There are essentially two activities within this
stage. First, the flattening of the parse tree results in a
linear form expressed in an intermediate language (inter-
mediate abstract language one or IAL1). Then, a series of
refinements and expansions is performed on this linear
form to generate an abstract program expressed in another
intermediate language (IAL2).

4) Data Structure Selection: A cost analysis is per-
formed, and a set of data structures that implements the
abstract data type in the specification is selected. The se-
lection process is designed to choose the implementing
data structures associated with a minimum cost that is
based on predefined criteria.

5) Data Structure and Algorithm Integration: The se-
lection of a specific set of data structures requires a
matching set of concrete algorithms. This integration ac-
tivity associates the data structures and the algorithms that
manipulate them.

6) Program Integration: This stage is the final integra-
tion in which the programs implementing the abstract data
type are integrated with the main program.

The synthesis process is defined by a function that maps
abstract constructs of the specification language into con-
crete constructs of the target programming language. Let
trf be this function. The function trf is defined by:
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requirements

specifications

)

design synthesis

implementation

I

testing

mointenance

Fig. 4. The synthesis system role in the software life cycle.

1) the input domain which consists of constructs of the
specification language. The syntactic aspect of these con-
structs defines patterns, and the semantic aspect defines
predicates on these patterns. Therefore, the input domain
of trf is a Cartesian product of patterns and predicates.
The input domain is a finite domain;

2) the output domain which consists of the constructs
of the target language. The output domain is finite also;
and :

3) the mappings (transformation rules) which associate
an abstract construct with an equivalent concrete con-
struct. Given that the input and output domains are finite,
the set rules are also finite. This set was constructed man-
ually and made part of the knowledge of the synthesis
system.

The application of trf requires pattern recognition and
predicate satisfaction. Once a pattern is recognized, a set
of predicates associated with the pattern is tested. The
product of the pattern and the successful predicate will
form the input of #rf. A transformation rule is then se-
lected and applied resulting in another pattern.

A. The Synthesis System and the Software Development
Process

The traditional software life cycle consists of six se-
quential stages: 1) requirements; 2) specification; 3) de-
sign; 4) implementation; 5) testing; and 6) maintenance.
A software life cycle that integrates the synthesis system
would consist of five sequential stages: 1) requirements,
2) specification; 3) synthesis; 4) testing; and 5) mainte-
nance. The synthesis system consolidates and automates
the design and implementation stages. These two stages
are usually time consuming and introduce specific details
that are more related to the programming language than
the problem domain. Fig. 4 shows the relationship be-
tween the traditional software life cycle and the synthesis
system life cycle. The synthesis system is closely related
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to the Higher Order Software, Inc. functional life cycle
[20]. Both approaches attempt to validate the specifica-
tions at an early stage of the software development pro-
cess, and then generate executable code.

B. The Synthesis Process

The semantics of the operations of an abstract data type
specification is specified in terms of input and output as-
sertions of the form:

{P(a)} S {R(a, x)} O

where

P(a) is the input assertion to be enforced;
R(a, x) is the output assertion to be satisfied; and
S is the list of statements to be synthesized.

Formula (1) is manipulated by the synthesis system in or-
der to derive an implementation S that satisfies P and R.
The output assertion R(a, x) has different forms which are:

a) x = R (a);

b) x <relational operator> R’ (a);

¢) R1 (x) = R2 (a);

d) Rl (x) <relational operator> R2 (a); and

e) Rl (a, x) <relational operator> R2 (a, x).

The nonterminal < relational operator> denotes >, >=,
<, <=, or =. The simplest form is form a). To satisfy
the assertion requires finding a value for x such that the
equality is satisfied. A trivial way to satisfy the assertion
is to set x to R’ (a). Form b) requires that the object x
have an ordering relation. Ordering is not always avail-
able, the fact which implies that the use of form b) will
potentially make the use of R (a, x) inconsistent. Even in
cases where consistency is safeguarded, the formula x >
R’ (x) can be satisfied in an infinite number of ways. In
programming, specific solutions are of interest.

Form c) is a generalization of form a). In general the
assertion cannot be solved unless the number of variables
in R1 (x) is one, i.e., we have

Rl(xla XZ, T, xn) = R2(al, a2a Ty, am)

where n = 1, which implies

R1(x)) = R2(ay, a, - - * , a,).

This assertion is basically form a), because R1 (x1) can
be easily reduced to x.

Form d) is a gneralization of forms b) and ¢), and form
e) is the most general form. All the other forms are sub-
cases of form e).

The output assertions of the specification language are
of form a). This choice reduces the complexity of the syn-
thesis system, and is consistent with the axiomatic ap-
proach as defined in [21]. Therefore, all output assertions

in a specification have the following form:
x = R(a). 2)

Formula (2) can be satisfied using the axiom of assign-
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ment rules given below:
{P@} x := R(@) {x = R()}. 3)

Therefore, the abstract embodiment of the list of state-
ments S is the assignment statement x : = R(a). The goal
of synthesis system is to decompose this abstract assign-
ment into primitive constructs whose collective effect is
equivalent to the abstract construct. That is, the instantia-
tion of (3) is syntactically modified and expanded while
its semantics is preserved.

The transformation of (3) depends on the type of the
variable name x. Let T be the type of x. T can assume the
following values:

1) Boolean:

2) integer;

3) real;

4) string;

5) collection (set or sequence);
6) Cartesian product; and

7) abstract.

There are several cases that need to be treated separately
due to different decomposition schemes. These cases are:

1) The types of x and R (a, x) are primitive unstruc-
tured types (i.e., Boolean, integer, real, and string).
However, given that R(a) is an expression, it is possible
that its operands are of types different from that of its re-
sult. There are two subcases:

a) The types of the operands of R (a) are all primitive
unstructured types. This kind of assertion can be trans-
lated directly into the target language constructs.

b) The types of the operands of R (a) are not (all) of
primitive unstructured types. Then, each must be of a type
belonging to category 2, 3, or 4. Further decomposition
is necessary.

2) x is a collection, and the result of R (a) is a collec-
tion. The assertion operator is distributed over all the ele-
ments.

x = R(a)
x/, l= expr, © X, = expr,

3) x is a Cartesian product of several types, i.e.,

X = [xl?x29 X3, * 0, xn]'

We thus have
[xh Xy, 0, xn] = R(a)
Xy = €Xpry * * * X, = €Xpr,

This decomposition is almost identical to the one used for
category 2. However, the implementation is different be-
cause category 2 involves repetitive constructs, whereas
category 3 requires straight line constructs.

4) x is an abstract type defined elsewhere. Its imple-
mentation is needed to be able to perform the decompo-
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sition. Two tasks are consecutively carried out. First, an
interface check is made to determine whether the opera-
tion is properly invoked. Next, the parameters, if any, are
mapped into their concrete representation to conform to
parameter compatibility. This task requires the availabil-
ity of the interface specification and the implementation
of the abstract type in the database.

1) Resolution of Operator Meaning: Overloaded op-
erators have to be assigned a unique meaning. The func-
tion of the first stage of the synthesis process is to resolve
the meaning of the overloaded operators. Meaning reso-
lution is a simple transformational process. Given an in-
put pattern and a predicate associated with the pattern, an
output pattern and a new predicate are generated. The re-
sult is syntactically and semantically equivalent to the in-
put pattern. A transformation rule has the form

pr (x) & pa (t) => pr (x’) & pa (t’) 4

where

pr (x) is the predicate on x;

pa (p) is the pattern of a subtree ¢;
pr (x’) is the new predicate; and
pa (t’) is the output pattern.

The purpose of this transformation phase is to resolve
operator overloading. Therefore, the transformation rules
deal with operators and operands, i.e., expressions of the
specification language. Consequently, any complex
expression can be decomposed into a finite number of
simple constituents represented as trees. These trees de-
fine the patterns pa (f) under consideration. The manifes-
tations of the patterns are listed below.

1) Empty Pattern: This pattern corresponds to an
empty expression. No transformation is performed on this
pattern. '

2) Single-Node Pattern:

This pattern corresponds to an expression that consists of
a single operand and no operator. No transformation is
performed on this pattern.

3) Unary Operator Pattern:

This pattern corresponds to an expression that consists of
a unary operator and an operand. The unary operator is
represented by the root of the tree, and the operand by the
leaf. A transformation U is performed on this pattern. We
have:
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: ©
G & T1 (TO) ==== — & T2 (RO

T1 and T2 are type predicates and R is a function that
returns the type of the result of an operator O. O’ is the
resolved operator. A transformation U is performed on
this pattern.

4) Binary Operator Pattern:

° ‘

This pattern corresponds to an expression consisting of a

binary operator and a left and a right operand. A trans-
formation B is performed on this pattern.

& T(T0) B & T'(R(0O%))
& T(T1)

5) N-ary Pattern: This pattern is denoted as a tree with
a root and N children. An N-ary pattern models all the
previous patterns. A transformation N is performed on this
pattern.

The predicates used with these transformation rules are
type predicates. A type predicate has the form T (x), where
x is a variable of some type, and T is a function that re-
turns true if x is of type T, and false otherwise.

The operator meaning resolution transformations are
equivalence-preserving functions, because the effect of
applying a transformation results only in a renaming of
the operator. The renaming function is well-defined, and
can be described by listing its domain, its range, and the
mapping between the elements of the domain and the ele-
ments of the range.

2) Stepwise Transformations: The previous transfor-
mational stage reduces the level of abstraction by discrim-
inating among several overloaded operators. However, the
amount of detail provided and the abstractness of the con-
structs are left unchanged. It is the function of the second
stage of the synthesis to transform the abstract constructs
into more concrete constructs. Generally, a transforma-
tion of an abstract construct results in a refinement, thus
introducing more constructs. These new constructs may
be themselves subject to further transformation. The pro-

===
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cess is applied recursively until all the constructs are con-
crete.

V. TRANSFORMATION RULES

A transformation is selected and applied whenever a
pattern is recognized and a predicate is satisfied. There-
fore, the description of these rules will consist of a pat-
tern, a predicate, and a transformation template. The tem-
plate constitutes the body of a parameterized procedure.
The parameters of the procedures correspond to the op-
erands of the operator being transformed. The instantia-
tion of the template generates a set of new patterns and
new predicates. New patterns that are abstract are added
to a list of candidates for further transformation. There
are four types of patterns in a transformation template.
These patterns are as follows.

1) zero-ary patterns: these patterns consist of a key-
word of TAL2. Zero-ary patterns are used for grouping
other patterns.

2) unary patterns: these patterns consist of a keyword
of TAL2 and an operand.

3) binary patterns: these patterns consist of a keyword
of IAL2 and two operands.

4) ternary patterns: these patterns consist of a key-
word of IAL2 and three operands.

The operands appearing in transformation template pat-
tern are either operands ‘that appear in the pattern being
transformed, in which case they bear the same identifier,
or they are temporary operands newly introduced. Iden-
tifiers of temporary operands are of the form ‘¢z i’’.
Some of the patterns of the transformation templates are
prefixed with the symbol ‘‘(*)’’. This symbol indicates
that the pattern requires more refinement.

The transformation rules are classified into the follow-
ing four categories.

1) sequence transformation rules: these rules are ap-
plied to operators that manipulate sequence and elements
of sequences.

2) set transformation rules: these rules are applied to
operators that manipulate sets and elements of sets.

3) plex transformation rules: these rules are applied to
operators that manipulate plexes and components of
plexes.

4) miscellaneous transformation rules: there is only
one rule in this category.

A type that is structured as a sequence inherits all the
sequence operations. A type that is structured as a set in-
herits all the set operations. A type that is structured as a
plex inherits all the plex operations.

The operation ‘‘add__book’’ of the example shown in
Fig. 3 is used in this section to illustrate the different
phases of the synthesis process. The operation is trans-
formed through five stages in the next subsections.

A. Stage One

The operation is transformed into overloaded constructs
of IAL1. The transformed code is shown in Fig. 5. Line
numbers were added for reference. Patterns that have a
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1 begin_operation add_book
2 begin_input_assertion
3 function_call patronSis_staff 1 t__ o1
4 actual_parm user
5 constructor b lib
] function_call bookSequal 2 t__ 02
7 actual_parm b
8 actual_parm bk
9 there_exists t_ 02
10 not t_ 03 t_02
11 and t_ o4 t_ o1 t_ 03
12 end_input_assertion t_04
13 begin_output_assertion
14 add t_ o5 lib bk
15 assert t__96 lib t__ 95
16 end_output_assertion
17 end_operation add_book

Fig. 5. The ‘‘add__book’’ operation representation in generic IALI.

1 begin_operation add_book
2 begin_input_assertion
3 function_call patronSis_staff 1 t_ 21
4 actual_parm user
5» constructor b lib
6 function_call book$equal 2 t__ 02
7 actual_parm b
8 actual_parm bk
9= there_exists t__ 02
10 not t_ @3 t_ @2
11 and t_ 04 t_ 01 t_ @3
12 end_input_assertion t__o4
13 begin_output_assertion
14 set_element_radd t_ o5 Iib bk
15 set_assert t__ 06 1ib t_ 05
16 ond_ou‘tput_ussortion
17 end_operation add_book

Fig. 6. The ‘‘add_ book’’ operation representation in specific IAL1.

star (*) after the line number are candidates for the first
transformational stage. For example, on line 14, the op-
erator ‘‘add’’ is an overloaded operator. The abstract na-
ture of the operator subjects the pattern “‘add ¢ 05 lib
bk’ to further transformation. The predicate ‘‘S(lib) =
set”” is satisfied in this case, ‘and a new pattern
(““set__element__radd ¢ 05 lib bk’’ on line 14 of Fig.
6) is generated.

B. Stage Two

The constructs that need transformation are identified
and transformed into specific IAL1 code. Fig. 6 shows
the result of transforming constructs of Fig. 5.

C. Stage Three

The constructs of IAL1 that need transformations are
identified (starred lines in Fig. 6). These constructs are
transformed into IAL2 constructs. For example, on line
14 of Fig. 6, the operator ‘‘set element_radd’’ is an
abstract operator that requires refinement. The abstract
nature of the operator subjects the pattern ‘‘set _element-
_radd ¢+ __ 05 lib bk’ to further transformation. The
predicate “‘S(z___ 05) = S(lib) = set $ Tt 05) =
T(lib) & T(bk) = T(C(lib))’’ is satisfied in this case. The
transformation template corresponding to this pattern and
this predicate is instantiated. The result of these transfor-
mations is shown in Fig. 7.

D. Stage Four

Data structure selection is performed at this stage. This
process uses the results of a previous analysis of the be-
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1 begin_operation add_book
2 begin_input_assertion
3 function_call patron$is_staff 1 t__e1
4 actual_parm user
6 enumerate_set b lib
6 function_call bookSequal 2 t__ @2
7 actual_parm b
8 actual_parm bk
9 if_test t_ @2
1@ exit I__@1
11 end_enumerate_set
12 not t_ @3 t_ 02
13 |__01: and t_ 04 t_ o1 t_ @3
14 end_input_assertion t_ 04
15 begin_output_assertion
16 begin_set_element_radd
17 copy_set t__ o5 lib
18+ radd_set_element t_ o5 t__04 bk
19 end_set_element_radd
20+ set_assert t__ 06 lib t_ o5
21 end_output_assertion
22 end_operation add_book

Fig. 7. The ‘‘add__book’’ operation representation in IAL2.

add_book: entry (lib,bk,user);

decl cant_add condition;

dcl  tp__01 fixed bin;
t__ 21 = patronSis_staff (user);
call rep$set_size (tp_ @1,1ib);
t__922 = false;
do while (tp_ 082 > ©);
call rep3enumerate_set (b,lib);
t__ 02 = book$equal (b,bk);
it t_e2
then go to |I_ 01;
else;
tp__ 921 = tp_ 01 - 1;
end;
I__o1:

t_83 = t_ 02

t_ 84 = t_01 & t_03;
it t_o4
then do;
begin;
call repScopy_set (t_ ©5,1ib);
call repSradd_set_element (t__@5,bk);
end;
lib = t_ @5;
end;

else signal cant_add;
return /+ add_book »/;

Fig. 8. The ‘‘add_book’’ operation implementation in PL/1.

havior of the abstract data type operations to select con-
crete data structures. A knowledge base [22], [23] about
the complexity of different algorithms on several imple-
mentations of each abstract data structure is used by the
synthesis system to select algorithms and data structures
that minimize the cost complexity [24]. The information
contained in the knowledge base was obtained through
analysis of algorithms and data structures that were im-
plemented using the random access machine model of
[25].

Other optimization techniques for high-level data struc-
tures and constructs [26], [27] are being investigated for
possible implementation.

E. Stage Five

This is the last stage in the transformation process.
Constructs of IAL2 are translated directly into PL/I con-
structs. Fig. 8 shows the result of this stage.
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VI. SUMMARY

The transformational approach to programming is in-
tended to free the software engineer from details that are
irrelevant to the problem domain. The abstract data type
specification language described in this paper can aid in
minimizing the effort in the software life cycle. The syn-
thesis system described in this paper uses the program-
ming paradigm of stepwise refinement to automatically
transform an abstract specification into an executable pro-
gram. The synthesis process is not a monolithic process.
Several automated stages and successive refinements are
required to completely generate a concrete program. A set
of transformation rules is associated with each stage of
the synthesis process. These transformation rules were
described, and an example to illustrate their selection and
application was given. Experience with the system in-
cludes specification and synthesis of several moderately
sized abstract data types, such as a symbol table for a
block-structured language, a university library database,
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and a resource manager [28]. Qualitative and quantita-
tive analyses of the specifications and their implementing
programs reveal a definite advantage in using the synthe-
sis approach to software development. The implementing
programs are not as efficient at this moment as hand-coded
programs; however, reliability, and early availability for
testing have a greater impact on the software life cycle
than execution efficient.

The existing synthesis system generates PL/I and Pas-
cal code from abstract specifications. Future work in-
cludes the enhancement of the synthesis system to support
code emission for additional procedural languages. Cur-
rently, research is being performed involving knowledge-
based optimization of the generated code, code generation
in Ada® and C, automatic test generation from specifica-
tions, and the rehosting of the synthesis system on a Vax
system.

®Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

APPENDIX

Patron Specification

1 type patron;

2 interface

3 types: patron;

4 operations:

5 equal (in patron; in patron) returns (boolean);
6 is_staff (in patron) returns (boolean);

7 limit (in patron) returns (boolean);

8 empty returns (patron);

9 check (in patron) returns (patron);

10 return (in patron) returns (patron);

11 create_patron (in name; in integer; in boolean) returns (patron);
12 imports: name;

13 let patron = tuple (patron_name: name,

14 book_count: integer,

15 book_limit: integer,

16 staff: boolean);

17 initially patron = [patron:
18 operations

19 equal: function (in pl1, p2:
20 find e such that e =

21 is_staff: function (in pat:

nameSempty, ©, &, false];

patron) returns (e: boolean)
nameSequal (pl.patron_name,p2.patron_name);

patron) returns (e: boolean)

22 find e such that e = pat.staff;

23 limit: function (in pat: patron) returns (e: boolean)

24 find e such that e = pat.book_limit >= pat.book_count;

25 empty: function returns (pat: patron)

268 find pst such that pat = [patron: nameSempty, O, 2, false];
27 check: function (in pl: patron) returns (p2: patron)

28 find p2 such that p2 = [patron: pl.patron_name, pl.book_count + 1, pl.book_limit, pl.steff);

29 return: function (in pl: patron) returns (p2: patron)

30 find p2 such that p2 = [patron: pl.patron_name, pl.book_count - 1, pl.book_limit, pl.staff];
31 create_patron: function (in n: name; in i: integer; in s: boolesn) returns (p: patron)
32 find p such that p = [patron: n, @, i, s);

33 end patron.
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1 type book;

2 interface

3 types: book;

4 operations:

s equal (in book; in book) returns (boolean);
6 match (in book; in book) returns (boolean);
7 author (in book; in name) returns (boolean);
8 make_book (in name; in string; in string; in integer) returns (book);
9 borrower (in book) returns (patron);

10 check (in book; in patron) returns (book);
11 return (in book) returns (book);

12 imports: patron, name;

13 let book = tuple (author_name: name,

14 title: string,

15 call_number: string,

16 copy_number: integer,

17 checked: boolean,

18 user: patron);

19 initially book =

20 operations

[book: nameSempty, "«", "«", &, false, patronSempty];

21 equal: function (in bl, b2: book) returns (e: boolean)

22 find e such that e = (match (bl, b2)) & (bl.copy_number = b2.copy_number)
23 match: function (in bl, b2: book) returns (e: boolean)

24 find e such that e = (nameSequal (bl.author_name,b2.author_name) &

25 (bl.title = b2.title) &

26 (bl.call_number = b2.call_number);

27 author: function (in b: book; in n: name) returns (e: boolean)

28 find e such that e = nameSequal (b.author_name, n);

29 make_book: function (in n: name;

in cl, c2: string;
30 find b such that b = [book: n, c1, ¢2,

in i: integer) returns (b: book)

i, false, patronSempty];

31 borrower: function (in b: book) returns (pat: patron)

32 find pat such that pat = b.user;

33 check: function (in bl: book;

in pat: patron) returns

(b2: book)

34 find b2 such that b2 = [book: bl.author_name, bl.title, bl.call_number, bl.copy_number,
true, pat];

35 return: function (in bl: book) returns (b2: book)

36 find b2 such that b2 = [book: bl.author_name, bl.title, bl.call_number,

37 bl.copy_number, false, patronSempty]

38 end book.
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