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Abstract—This paper deals with the design of a control strategy for a wheeled mobile robot
goalkeeper whose task is to intercept the ball before it goes inside the goal. The control law is based
on the parallel navigation guidance law where the goalkeeper moves on lines which are parallel to the
initial line of sight that joins the robot and the ball. A relative kinematics model in polar coordinates
is derived. Two approaches based on two different versions of parallel navigation are used. In the
first approach, we introduce a new version for parallel navigation which is adapted to the case of
the goalkeeper. In this formulation, the robot is controlled in the linear velocity and moves along a
predefined path that covers the goal. The particular case where the goalkeeper moves on the goal
line is considered in more detail and important quantities such as the interception time are derived in
closed form in some particular cases. In the second approach the robot is controlled in the orientation
angle, giving more flexibility for the robot motion. The robot path depends on the ball path, the linear
velocities of the robot and the ball, and their initial positions. Ball interception by the goalkeeper is
proven in this case also. Our control strategies are illustrated using an extensive simulation.

Keywords: Robotic soccer; wheeled mobile robot goalkeeper; ball interception; parallel navigation;
kinematics models.

1. INTRODUCTION

Robotic soccer presents an important example of complex behavior, where the
various tasks such as ball tracking and interception, moving obstacle avoidance,
and team collaboration are combined together. In fact, robotic soccer has attracted
the attention of researchers from various fields such as control theory, artificial
intelligence and computer artificial vision. RoboCup is a popular research domain
in robotic soccer. According to Ref. [1], the aim of RoboCup is the following:
‘By mid-21st century, a team of fully autonomous humanoid robot soccer players
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shall win the soccer game, comply with the official rules of the FIFA, against the
winner of the most recent World Cup’. During the last decade, the literature dealing
with soccer robotics has shown important developments. However, the problem of
robot soccer players is very complex and includes various tasks. As a result of this
complexity, most papers deal with one specific problem. The paper by Burkhard
et al. [2] gives a description of the recent developments and the future challenges
for soccer robotics.

This paper deals with the design of a control law for a wheeled mobile robot
goalkeeper. The control design of wheeled mobile robots soccer players has been
considered by many authors and various techniques were suggested [3, 4].

The task of the goalkeeper is to intercept the ball before it goes inside the goal. Of
course this task is different from other players’ tasks and requires a special strategy.
The problem of ball tracking and interception is a real-time problem, since the ball
motion is not known a priori. This renders the problem more difficult. The problem
of ball interception by a mobile robot is considered by using different approaches.
In Ref. [5], the authors used the concept of qualitative and relative velocity for
ball interception in a dynamic environment. Another approach based on Lyapunov
theory was suggested in Ref. [6] for general target tracking. These methods can be
used by an ordinary soccer player. However, the problem of goalkeeping requires a
special treatment.

Our control strategy for the goalkeeper is designed based on geometrical rules
combined with the kinematics equations. We use polar coordinates for the state
space representation of the kinematics equations.

Here, the control law for the wheeled mobile robot goalkeeper is achieved using
a variant of parallel navigation. The principle of parallel navigation [7, 12] is to
make the goalkeeper move on lines which are parallel to the initial line of sight that
joins the goalkeeper and the ball. To achieve this task, the wheeled mobile robot is
controlled in the linear velocity or the orientation angle. The idea of using parallel
navigation for ball interception by the goalkeeper is recent [8]. Here, the method
used is a new variant of parallel navigation adapted to the case of the goalkeeper.
According to Refs. [9, 10], quite similar strategies to parallel navigation are used by
baseball outfielders in order to catch the ball. The advantage of parallel navigation is
the zero miss distance; i.e. the interception is guaranteed under certain conditions,
as will be proven. Also, methods based on geometrical rules are known for their
robustness [7].

This paper is organized as follows. We discuss the geometry of the interception in
Section 3. In Section 4, we discuss the interception course using parallel navigation.
In Section 5, we introduce the first approach, where the robot is controlled in
the linear velocity. In Section 6, the particular case where the goalkeeper moves
in a straight line is discussed. Our second approach is discussed in Section 7.
An extensive simulation is carried out in Section 8.
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2. ROBOT GOALKEEPER MODEL

The goalkeeper is modeled as a wheeled mobile robot of the unicycle type. The
kinematics equations for this type of robots are given by:

ẋg = vg cos θg,

ẏg = vg sin θg,

θ̇g = wg,

(1)

where vg and wg are, respectively, the linear velocity of the wheel and its angular
velocity around the vertical axis. These velocities are taken as the control inputs.
The triple q = (xg, yg, θg) ∈ R2 × S1 represents the generalized coordinates, where
(xg, yg) represents the robot’s coordinates in the Cartesian plane of reference and θg

represents the robot’s orientation angle with respect to the positive x-axis. It is worth
noting that the control strategy developed in this paper is valid for other types of
robots such as omnidirectional robots. We choose to model the goalkeeper motion
by using the unicycle kinematics model because of its simplicity and because it
captures the main features of wheeled mobile robots motion.

The wheeled mobile robot goalkeeper is assumed to satisfy the following condi-
tions:

(i) The robot goalkeeper can move forward and backward.

(ii) The robot can measure in real-time the ball’s linear and angular velocities.

(iii) The robot keeps the line of sight view with the ball most of the time (short-time
occlusions are allowed), and can measure the angle between the reference line
and the line of sight joining the robot and ball.

The last two assumptions mean that the robot has a sensory system which allows
it to continuously measure important quantities such as the ball orientation with
respect to a reference line and the ball linear velocity. The continuous measurement
of the ball parameters is necessary, since the control strategy must be elaborated in
real-time. The influence of the sensory system on the control loop is beyond the
scope of this paper.

3. GEOMETRY OF THE INTERCEPTION

The geometry of the ball interception is shown in Fig. 1. The wheeled mobile robot
goalkeeper is denoted by G and the ball by B. The ball is modeled as a geometrical
point. Important geometric quantities are shown in Fig. 1. We define the following
terms. (i) The straight line that starts at G and is directed at B is called the line of
sight. This line is denoted by L. (ii) The relative distance between the goalkeeper
and the ball is denoted by r . (iii) The angle from the positive x-axis to the line of
sight is called the line of sight angle. This angle is denoted by σ . The initial line of
sight at time t0 when the ball is launched is denoted by L0. The initial line of sight
angle σ(t0) is denoted by σ0.
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Figure 1. Goalkeeper–ball interception geometry.

Figure 2. Kinematics of the ball’s motion.

The goalkeeper aims to catch the ball before it goes inside the goal. Of course
this task is not achieved by tracking the ball in the soccer field, but by intercepting
the ball when the ball is in a certain neighborhood of the goal. Hence, the robot will
stay within a given distance from the goal. In this paper the robot goalkeeper moves
along a predefined path that joins point P1 to point P2. This path covers the entire
goal. If the ball goes beyond points P1 or P2 then the goalkeeper does not have to
intercept it. It is worth noting that any configuration of the soccer field and the goal
can be obtained from Fig. 1 by a simple rotation or coordinates change.

Important quantities for the ball kinematics modeling are shown in Fig. 2. The
velocity of the ball is denoted by vb. The angle from the positive x-axis to the ball’s
velocity vector is called the path angle or the ball’s orientation angle, denoted by θb.
We also define the angle αb by:

αb = θb − σ, (2)



U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

VSP 2001/04/20 Prn:27/01/2006; 8:31 {RA} F:ar2385.tex; VTeX/VJ p. 5 (296-387)

Ball interception by a wheeled robot goalkeeper 5

where αb is the angle between the line of sight and the velocity vector. The aim of
the ball is to go inside the goal, thus restricting the values of θb. For example, for
Fig. 1, where the ball is to the right side of the goal, the ball can reach the goal only
if θb ∈ (π/2, 3π/2).

The ball’s linear velocity can be resolved into two components along and across L.
The velocity component along L is the radial velocity and is denoted by vb‖. In
a similar way, the velocity component across L represents the tangential velocity
which is denoted by vb⊥. The values of vb‖ and vb⊥ are given by the following
equations

vb‖ = vb cos αb,

vb⊥ = vb sin αb.
(3)

As we mentioned previously, our control strategy is based on the use of the
kinematics equations combined with geometrical rules; hence, the geometry of the
interception is of a particular importance.

The ball can perform two types of motion, i.e. accelerating and non-accelerating
motion. For an accelerating ball, either the orientation angle θb or the linear velocity
vb varies as a function of time. For a non-accelerating ball, both the orientation angle
and the linear velocity are constant. Of course the case of a non-accelerating ball is
simpler for analysis, and many quantities such as the interception time and position
can be found in closed form. Also, the interception is easier than the case of an
accelerating ball and does not require a highly maneuvering goalkeeper.

The use of polar coordinates for the state space representation of the kinematics
equations of wheeled mobile robots of the unicycle type is not recent. In fact, this
representation was used by many authors to design control laws. For example, in
Ref. [11], polar representation allowed the design of a closed loop control law using
a simple Lyapunov function. This control law is suitable for steering, path following
and navigation. In Ref. [8], polar coordinates combined with geometrical rules are
used for the design of simple and effective control laws for the robot. In this paper
also, our control strategy is designed based on polar representation. Consider the
robot representation in Fig. 3 and consider the following variable change:

x = r cos σ,

y = r sin σ,
(4)

where r and σ are as shown in Fig. 3. By considering the kinematics equations for
the unicycle wheeled robot and system (4), we get the following equations:

ṙ = vg cos(θg − σ),

rσ̇ = vg sin(θg − σ).
(5)

This system shows the time evolution of the distance r and the angle σ as a function
of the robot linear velocity and orientation angle.



U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

VSP 2001/04/20 Prn:27/01/2006; 8:31 {RA} F:ar2385.tex; VTeX/VJ p. 6 (387-435)

6 F. Belkhouche and B. Belkhouche

Figure 3. Kinematics of the goalkeeper’s motion.

4. INTERCEPTION COURSE USING PARALLEL NAVIGATION

Parallel navigation is a closed-loop control law which is used for the interception of
moving objects [7]. In Ref. [9], the authors suggested that baseball outfielders use a
control strategy similar to parallel navigation in order to catch the ball.

An important advantage of parallel navigation as a control law for the goalkeeper
is the fact that parallel navigation presents a closed-loop control system, i.e. the
control inputs depend on the state variables of the system. Closed-loop systems
present better performance than open loops. For example, they are more robust to
any external disturbance.

We consider that the reference frame of coordinates is attached to the ball. The
relative distance between the ball and the goalkeeper varies as follows:

ṙ = vb‖ − vg cos(θg − σ). (6)

In a similar way, the line of sight angle varies as follows:

rσ̇ = vb⊥ − vg sin(θg − σ). (7)

Parallel navigation states that the goalkeeper will move on lines L1, L2, . . . , Ln

which are parallel to the initial line of sight L0. An illustration is shown in Fig. 4.
As a result, the line of sight angle is constant. This simply means that the line of
sight rate will be equal to zero:

σ̇ = 0, (8)

which means that (7) becomes:

vg sin(θg − σ) = vb⊥. (9)

If we consider the system of equations (3) which gives the formulae for the radial
and tangential velocities for the ball, then we get for the relative distance:

ṙ = vb cos(θb − σ) − vg cos(θg − σ) (10)
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Figure 4. An illustration of parallel navigation.

and similarly for the line of sight angle rate:

rσ̇ = vb sin(θb − σ) − vg sin(θg − σ). (11)

By replacing the tangential velocity by its value for parallel navigation, (9) becomes:

vb sin(θb − σ) = vg sin(θg − σ). (12)

Since the line of sight angle σ(t) is constant and equal to its initial value, we can
write:

vb sin(θb − σ0) = vg sin(θg − σ0). (13)

This equation gives the relationship between the robot goalkeeper control inputs
and the ball’s variables. As it is well known, the robot goalkeeper has two control
variables, i.e. linear and angular velocities. In this paper, we suggest two solutions
for the robot control input. In the first approach the robot moves in a predefined path
with a predefined function for the orientation angle. The robot is controlled in the
linear velocity to stay in the interception course. In the second approach the robot
has more freedom in terms of the path, where it moves with constant linear velocity
and it is controlled in the orientation angle to stay in the interception course.

5. GOALKEEPER CONTROLLED IN THE LINEAR VELOCITY

Here, we assume that the robot goalkeeper will move in a predefined path that joins
the points P1 and P2 (the poles). This path can be a straight line, half a circle or an
arc of a circle of a given radius. These cases are illustrated in Fig. 5. Note that other
types of paths can be used; however, for simplicity, it is preferred to use linear or
circular motions.
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Figure 5. Path types traced by the goalkeeper.

The predefined path of the goalkeeper is characterized by the predefined orienta-
tion angle which will be denoted by:

θg = θgdef, (14)

where θgdef can be either a constant (in the case of a straight line) or a time-varying
function (in the case of circular motion). Equation (14) is equivalent to the following
equation in terms of the robot angular velocity:

wg = θ̇gdef. (15)

The function θgdef can be chosen according to many factors, such as the ball
maneuvers and the initial value of the line of sight angle. Since the orientation is
predefined, the only control variable is the linear velocity. The parallel navigation as
stated by (13) allows us to derive the control law for the goalkeeper’s linear velocity.
This allows us to obtain:

vg = vb sin(θb − σ0)

sin(θgdef − σ0)
. (16)

From this equation, it is clear that vg is not defined when θgdef = σ0. This case is an
important particular case, which corresponds to the pure pursuit where the velocity
of the pursuer lies on the line of sight. If the robot’s predefined path is the goal
line, then we have θgdef �= σ0 unless the ball itself is on the goal line. However, it
is possible that θgdef = σ0 when the predefined path is circular (even though this is
rare). The problem can be solved by considering a delay in the launch time, where
instead of considering σ0 = σ(t0), a new value of the line of sight angle σ1 = σ(t1)

which satisfies θgdef �= σ1 is used.
Even though the control laws given by (54) and (16) are different, they use the

same principle. The main difference between the two approaches is that in the first
case the robot will move towards the interception point (of course if the robot is
not initially heading towards this point, then a heading regulation is necessary).
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Figure 6. An illustration of modified parallel navigation.

In the second case the robot is on a collision course and it is controlled in vg in
order to arrive to the interception point at the same time as the ball. Unlike the
previous case, the predefined path satisfies the non-holonomic constraint; this is
an important point. A comparison between the parallel navigation formulated by
the control law (54) and the parallel navigation formulated by the control law (16)
is shown in Figs 4 and 6, where the ball is performing the same motion, which
is linear for simplicity. For the first case (Fig. 4), the goalkeeper’s linear velocity
is constant. For the second case (Fig. 6), the orientation angle is constant. The
interception is achieved successfully for both cases. It is worth noting that for the
first case, it is assumed that the initial orientation for the robot satisfies (54), hence
no heading regulation is necessary.

Now, consider (16) with θgdef �= σ0. It is clear from the control law (16) that the
goalkeeper’s linear velocity depends on the following parameters and variables:

(i) The preset value for the robot orientation angle, which can be seen as a preset
control input.

(ii) The initial line of sight angle, which depends on the initial positions of the ball
and goalkeeper.

(iii) The ball’s maneuvers, i.e. the ball’s orientation angle and linear velocity.

The dependence of the robot goalkeeper’s control input on the ball’s maneuver is
normal, since the interception of the ball requires the goalkeeper to move according
to the ball’s maneuvers. The relationship between vg and the ball’s orientation angle
is non-linear. The robot may slow down or go faster when θb changes (we will see
an example in the simulation).

Unlike the relationship between vg and the ball’s orientation angle, the relation-
ship between vg and the ball’s velocity is linear:

vg = k(t)vb, (17)
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with:

k(t) = sin(θb − σ0)

sin(θgdef − σ0)
, (18)

where k(t) is a time-varying proportionality factor in general. It is worth noting that
k(t) maybe greater or smaller than 1 depending on the values of θb and θgdef. From
the dimensions of the goal and the field, the ball will travel longer distances than the
goalkeeper, which means that in general k(t) < 1. This is an important difference
from the other formulation of parallel navigation [8], where the interception requires
vg > vb.

It is also important to note that the sign of k(t) is not necessarily positive — k(t)

may change sign during the interception process. If k(t) changes sign, then the robot
changes its direction. This case happens usually when the ball suddenly changes
its orientation angle, e.g. by performing a piece-wise linear motion. An example
illustrating this property is considered in the simulation.

Equation (16) states that vg is equal to zero (hence the goalkeeper does not move)
in the following two cases:
(i) When vb = 0, the ball is not moving.

(ii) When θb = σ0, with vb �= 0, in this case, the ball is moving in the line of sight
straight in the direction of the goalkeeper; the goalkeeper will intercept the ball
without moving if the ball keeps its orientation angle constant.

5.1. Robot limitations

Of course wheeled mobile robots present a physical limitation on the maximum
linear velocity. This problem arises in our case when the ball is close to the goal
line (hence θgdef is close to σ0) and is moving with high speed. However, the further
the ball’s initial position is from the goal, the smaller is the required linear velocity
of the goalkeeper, since the distance traveled by the goalkeeper will be smaller than
the distance traveled by the ball. In fact, the further the initial position of the ball is
from the goal, the closer θb is to σ0 and hence k(t) becomes smaller. In real soccer
this property is satisfied in general, since the goal dimensions are much smaller than
the soccer field dimensions. Let vgmax be the maximum value for the linear velocity
of the goalkeeper and vbmax be the maximum velocity of the ball. The control input
for the robot allows us to write:

vgmax = kTvbmax, (19)

where kT is the maximum tolerable value for the velocity ratio. From (18), we have:

sin(θb − σ0)

sin(θgdef − σ0)
< kT. (20)

This equation gives the minimum value for sin(θgdef − σ0) as follows:

sin(θgdef − σ0) >
sin(θb − σ0)

kT
. (21)
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The goalkeeper maximum speed constraint is satisfied when the predefined angle
θgdef and the line of sight angle σ0 satisfy (21).

For the radial acceleration given by arad
g = v2

g/r , where r is the curvature radius
of the path, it is always possible to choose r so that the radial acceleration is smaller
than its maximum value arad

g < arad
gmax. In the case where the goalkeeper moves on

the goal line, we simply have arad
g = 0.

For the tangential acceleration (defined as atan
g = dvg/dt), the maximum value is

given by:

atan
gmax = kTv̇bmax + k̇Tvbmax. (22)

If the ball is not accelerating (v̇b = 0 and θ̇b = 0), and the predefined path is a
straight line (from which it results k̇ = 0), then atan

g = 0. If the ball is moving in a
straight line and accelerating in the velocity (this is the case in general in real soccer
robotics), and the goalkeeper is moving in a straight line, then k = 0, and thus
atan

gmax = kv̇bmax, from which the maximum tolerable value for k and the appropriate
values of θgdef can be obtained.

5.2. Positive versus negative velocities

Earlier, we made the assumption that the robot can move forward and backward. In
many situations, the interception requires the robot to move forward and backward.

Initially the robot goalkeeper is at a middle distance between points P1 and P2.
When the ball is launched the robot has to make a decision in which direction to
move (towards point P1 or point P2). For positive values of vg the robot moves
towards P1 and for negative values of vg the robot moves towards P2. The sign of
vg is determined by θb, θgdef and σ0.

If we consider the configuration of Fig. 1, where θgdef = θg0 = π/2, then the
goalkeeper will move towards point P1 when:

θb − σ0 ∈ (0, π), (23)

and towards P2 when:

θb − σ0 ∈ (π, 0). (24)

If θb suddenly changes its interval, then the robot changes its direction.

5.3. Robot kinematics equations under the control law

The wheeled mobile robot under the control law (16) moves in the Cartesian frame
of coordinates according to the following kinematics equations:

ẋg = [vbk(t)] cos θgdef,

ẏg = [vbk(t)] sin θgdef,

θ̇gdef = wg.

(25)
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It is clear that in the case where the robot moves on the goal line, we have wg = 0.
For system (25), the solution for the robot position can be obtained easily for a
non-accelerating ball when wg = 0.

5.4. Time variation of the relative distance

Assume that the robot orientation angle is chosen such as that θgdef(t) �= σ0 for all
values of t . By considering (10) for the relative distance and (16), we get:

ṙ = vb

[
cos αb − sin αb cos(θgdef(t) − σ0)

sin(θgdef(t) − σ0)

]
. (26)

This equation can be simplified using some trigonometric identities, which allows
us to get the following equation for the ball–goalkeeper distance:

ṙ = vb

[
sin(θgdef(t) − θb)

sin(θgdef(t) − σ0)

]
. (27)

The interception of the ball corresponds to r(t) = 0 for a given time t < +∞. In
general, proving that the interception takes place is equivalent to proving that ṙ < 0,
which means that the range is a decreasing function of time.

5.5. Relative motion in the Cartesian plane

The ball motion in the Cartesian frame of coordinates is given by the following
system:

ẋb = vb cos θb,

ẏb = vb sin θb,
(28)

where xb and yb are the coordinates of the ball in the Cartesian frame. Let us define
the following relative velocities:

ẋd = ẋb − ẋg,

ẏd = ẏb − ẏg.
(29)

This system is equivalent to (10) which gives the time derivative of the relative
distance. By considering the robot motion under the control law, we get:

ẋd = vb[cos θb − k(t) cos θgdef],
ẏd = vb[sin θb − k(t) sin θgdef]. (30)

By replacing k(t) by its value and considering some trigonometric identities we get:

ẋd = vb cos σ0
sin(θgdef − θb)

sin(θgdef − σ0)
,

ẏd = vb sin σ0
sin(θgdef − θb)

sin(θgdef − σ0)
.

(31)
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The interception corresponds to xd = 0 and yd = 0 at the same time.
In the next section, we provide an analysis to the case where the goalkeeper moves

on the goal line. The analysis for the case where the goalkeeper moves in an arc of
a circle is quite similar.

6. GOALKEEPER MOVING ON THE GOAL LINE

This case corresponds to a constant orientation angle. We denote θgdef = θg0. For
example, for the configuration of Fig. 1, we have θg0 = π

2 . The control law (16) can
be rewritten as follows:

vg = vb sin(θb − σ0)

sin(θg0 − σ0)
. (32)

The denominator in (32) is constant and the numerator is a function of the ball
parameters. In this case we have θg0 �= σ0, except in a very special limit case when
the ball is at the limit of the soccer field in the same line as the goal line (the line
of sight coincides with the goal line). This case can be seen easily in Fig. 1 where
θg0 = π/2, and the limit values of σ0 are π/2 and −π/2, which correspond to the
ball in the same line as the goal line. These limit values are excluded since they are
not of practical importance.

Equation (27) for the relative distance between the robot and the ball becomes:

ṙ = vb
sin(θg0 − θb)

sin(θg0 − σ0)
. (33)

Depending on whether the ball is accelerating, we have two cases which we consider
in the following section.

6.1. Non-accelerating ball

In this case, from (32), the goalkeeper moves with a constant linear velocity, which
means that the goalkeeper is not accelerating and ṙ is constant. Here, it is easy to
find the solution for the relative distance, and the interception time and position. In
fact, the relative distance varies with time according to the following equation:

r(t) =
∫ t

0
ṙ(τ ) dτ. (34)

Since ṙ is constant, we have:

r(t) = r0 + ṙ t . (35)

By replacing ṙ by its value we get:

r(t) = r0 + vb
sin(θg0 − θb)

sin(θg0 − σ0)
t. (36)
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In order to have an interception, i.e. r(t) = 0 for t < +∞, the following inequality
must be satisfied:

sin(θg0 − σ0)

sin(θg0 − θb)
< 0. (37)

Of course, θg0 has a fixed value, and θb and σ0 lie in given intervals for which
inequality (37) is satisfied, as we will see.

6.2. Accelerating ball

If the ball’s linear velocity or orientation angle is time varying, then (32) states that
the goalkeeper’s linear velocity is also time varying and ṙ is not constant anymore.
In other words, if the ball is accelerating then the goalkeeper is also accelerating.
Equation (34) is valid for this case also, but since ṙ is time dependent, the derivation
of the solution requires the knowledge of the ball’s maneuvers and the use of
numerical techniques. If the ball is moving in a constant direction, but with a time-
varying linear velocity, then vg is proportional to vb with a constant proportionality
factor. An important realistic case is when the ball moves in a constant direction
with the following linear velocity:

vb = vb0a
t, (38)

where vb0 = vb(t0 = 0), and a < 1. Equation (38) interprets a physical law which
states that the ball becomes slower the longer it rolls. The robot linear velocity
varies as follows:

vg = sin(θb − σ0)

sin(θg0 − σ0)
vb0a

t (39)

= kvb0a
t. (40)

It turns out that vg is time decreasing similarly to vb.
The discussion of the interception of the ball is stated as follows.

PROPOSITION 1. When the wheeled mobile robot is moving in the goal line with
a constant orientation angle that satisfies θg0 �= σ0, the control law (16) results in a
successful interception of the ball by the goalkeeper.

Proof. We consider the configuration of Fig. 1 for the goal geometry. As we
mentioned previously, any other configuration can be obtained from Fig. 1 by a
simple rotation.

From the configuration of Fig. 1, the predefined direction of the robot is given by

θg0 = π

2
, (41)
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and the ball is always to the right side of the goalkeeper (xb > xg). This means that
the line of sight angle is:

σ0 ∈
(

−π

2
,
π

2

)
. (42)

In the same way for the ball to reach the goal, the ball’s orientation angle is restricted
to

θb ∈
(

π

2
,

3π

2

)
. (43)

From (41) and (42), and (41) and (43), respectively, we get

θg0 − σ0 ∈ (0, π), (44)

and

θg0 − θb ∈ (−π, 0). (45)

By considering the intervals for θg0 − σ0 and θg0 − θb in (44) and (45), it is easy
to see that the right-hand side term in (33) has a positive numerator and a negative
denominator, which means that ṙ is negative and hence the relative ball–goalkeeper
distance is decreasing. �

PROPOSITION 2. The interception time of a non-accelerating ball by the goal-
keeper moving under the control law (16) is given by:

tf = − r0

vb

sin(θg0 − σ0)

sin(θg0 − θb)
. (46)

Proof. Let us rewrite the equation for the relative distance in the case of a non-
accelerating ball:

r(t) = r0 + vb
sin(θg0 − θb)

sin(θg0 − σ0)
t. (47)

From Proposition 1 it is stated that inequality (37) is satisfied. The interception
time corresponds to r(tf) = 0 which gives:

tf = − r0

vb

sin(θg0 − σ0)

sin(θg0 − θb)
. (48)

Obviously, tf is proportional to the initial distance and inversely proportional to the
ball’s velocity. �
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It is simple to verify (46) by considering the solution for system (31) for a non-
accelerating ball with θgdef = θg0 = constant. The solution is in this case:

xd(t) = vb cos σ0
sin(θg0 − θb)

sin(θg0 − σ0)
t + xd0,

yd(t) = vb sin σ0
sin(θg0 − θb)

sin(θg0 − σ0)
t + yd0,

(49)

where xd0 and yd0 are the initial states for xd and yd, respectively. It is easy to see
that by replacing t by tf, we get:

xd(tf) = −r0 cos σ0 + xd0,

yd(tf) = −r0 sin σ0 + yd0,
(50)

which means that xd(tf) = 0 = yd(tf).

PROPOSITION 3. The interception position of a non-accelerating ball by the
goalkeeper moving under the control law (16) is given by

xg = xg0 − r0 cos θg0
sin(θb − σ0)

sin(θg0 − θb)
,

yg = yg0 − r0 sin θg0
sin(θb − σ0)

sin(θg0 − θb)
,

(51)

where xg0 and yg0 represent the initial position of the goalkeeper.

Proof. Of course the interception takes place on the goal line. The solution for
xg and yg for a non-accelerating ball is given by:

xg(t) = [vbk cos θg0]t + xg0,

yg(t) = [vbk sin θg0]t + yg0.
(52)

By replacing t by tf and k by its value, we get:

xg = xg0 − r0 cos θg0
sin(θb − σ0)

sin(θg0 − θb)
,

yg = yg0 − r0 sin θg0
sin(θb − σ0)

sin(θg0 − θb)
.

(53)

�

We have considered here the interception time and position when the ball is not
accelerating. These quantities are easy to compute in this case. However, they can
be numerically calculated or estimated for the case of an accelerating ball. It is
worth noting that (46) and (51) give the exact solutions. In the next section, we
discuss the second approach.
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7. ROBOT CONTROLLED IN THE ORIENTATION ANGLE

In this formulation the goalkeeper moves with constant linear velocity and is
controlled in the orientation angle. The robot control input can be obtained
from (13) as follows:

θg = sin−1

(
vb

vg
sin(θb − σ0)

)
+ σ0. (54)

This approach provides more flexibility to the robot in terms of the path. The
path here depends on the ball path, and other factors such as the robot and the
ball velocities and initial positions. Since the sine function vibrates within the
region [−1, 1], in order for (54) to make sense without dependence on the values
of θb and σ0, it is required that vg > vb. However, when the difference in the angle
θb − σ0 is small enough, the robot can move slower than the ball and still intercepts
it. In all cases the robot linear velocity must be chosen such that:

1

k
sin(θR − σ0) < 1. (55)

In the limit case when θb = σ0 (the ball is moving in the line of sight), it turns out
that the goalkeeper orientation angle is given by θR = σ0 [from (54)], which means
that the goalkeeper also moves in the line of sight, but in the opposite direction to
the ball. In this particular case, the robot can move with any value for vg > 0 and
intercept the ball.

In general, when the ball is kicked towards the goal, we have (θb − σ0) ∈
(π/2, 3π/2), which means that the ball is approaching from the goal. This
corresponds to a negative value for the ball radial velocity vb‖, which can be written
as:

vb‖ = −vb

√
1 − sin2(θb − σ0) < 0. (56)

The proof that the goalkeeper intercepts the ball successfully can be stated as
follows:

PROPOSITION 4. Under the control law given by (54), the robot intercepts the
ball successfully.

Proof. The aim is to prove that the relative goalkeeper–ball distance is decreas-
ing under the control law (54); thus ṙ < 0. When (55) is satisfied, we have:

sin−1

(
1

k
sin(θR − σ0)

)
∈

(
−π

2
,
π

2

)
. (57)

The robot radial velocity under the control law (54) is the following:

vg‖ = vg cos

(
sin−1

(
1

k
sin(θR − σ0)

))
. (58)
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By considering (57), it turns out that vg‖ > 0. Thus, we can write:

vg‖ = vg

√
1 − 1

k2
sin2(θR − σ0). (59)

The relative distance between the goalkeeper and the robot varies as follows:

ṙ = −vb

√
1 − sin2(θb − σ0) − vg

√
1 − 1

k2
sin2(θb − σ0). (60)

Clearly, when k is chosen such that (1/k) sin(θb − σ0) < 1, ṙ < 0, ∀θb, ∀σ0. Thus,
the robot intercepts the ball successfully. �

Visual occlusions occur frequently in real soccer robotics. Short-time occlusions
do not affect the control loop in general. However, long-time occlusions can affect
the control loop. Assumption (iii) in Section 2 states that only short-time occlusions
are allowed. The implementation of parallel navigation in both cases requires the
following measurements

• Ball velocity and orientation angle.

• Initial value of the line of sight angle.

The real-time measurement of the ball’s quantities can be established using
various types of sensors. For the implementation of parallel navigation it is better
to use sensors that are less sensitive to visual occlusions.

8. SIMULATION

This section simulates the interception of the ball by the goalkeeper in various
scenarios. We consider the following cases:

• Goalkeeper moving on the goal line, non-accelerating ball.

• Goalkeeper moving on the goal line, accelerating ball.

• Goalkeeper moving on the goal line, ball performing a piece-wise linear motion.

• Goolkeeper controlled in the orientation angle, non-accelerating ball.

• Goolkeeper controlled in the orientation angle, accelerating ball.

8.1. Goalkeeper moving on the goal line, non-accelerating ball

We take the configuration of Fig. 1; the goal position is xgoal = 2, ygoal ∈ (1, 9).
The ball moves according to the following motion equations:

xb = −2t + 12,

yb = 1.1547t + 3,
(61)

with θb = 150◦, vb = 2.309 (for simplicity, we assume that the velocities, the
positions and the time are without units). The initial position of the ball is (12, 3).
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Figure 7. Interception for the scenario of Section 8.1.

At the initial time the goalkeeper is at xg0 = 2, yg0 = 5, which is the middle of the
goal.

The ball is moving straight to the goal. Of course the goalkeeper does not know
the ball’s motion, but can measure in real-time θb and vb, and compute vg. The line
of sight angle is σ0 = −11◦.31. It turns out that vg = 0.7546, which is constant
since θb and vb do not change. Simulation for this scenario is shown in Fig. 7.
The interception point is (xi, yi) = (2, 8.77) and the interception time is tf = 5.
These values are obtained from simulation. The exact values can be obtained from
equations (46) and (51).

8.2. Goalkeeper moving on the goal line, accelerating ball

The ball is accelerating by changing its orientation angle, and performs a curved
trajectory. The initial line of sight angle, and the ball and goalkeeper initial positions
are the same as the previous example. The interception for this scenario is shown
in Fig. 8. It is clear that the linear velocity for the goalkeeper is decreasing. The
interception point is (2, 7.03).

8.3. Goalkeeper moving on the goal line, ball performing a piece-wise linear
motion

The ball may hit another player and change its orientation suddenly. This case poses
problems even for professional goalkeepers. The ball performs a piece-wise linear
motion as shown in Fig. 9. During the first phase, the ball moves according to:

xb = −1.3t + 11,

yb = −2t + 15,
(62)
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Figure 8. Interception for the scenario of Section 8.2.

Figure 9. Interception for the scenario of Section 8.3.

with vb = 2.38, θb = 237◦, σ0 = 48◦.01 and (11, 15) is the ball’s initial position.
During the second phase the ball moves according to:

xb = −0.833t + 4.5,

yb = 1.167t + 5,
(63)

with vb = 1.43, θb = 127◦.48, σ is kept the same of course and (4.5, 5) are the
coordinates of point C where the ball changes its orientation.

The computation of the linear velocity gives for the first phase vg = −0.5556.
This negative value means that the goalkeeper will move towards point P2. The
second phase starts when the ball arrives at point C. At this time the goalkeeper is
at position D and the linear velocity for the goalkeeper becomes vg = 2.19. Thus,
the goalkeeper changes direction and starts moving towards point P1 to intercept the
ball at point (2, 8.5).
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Table 1.
Robot and ball coordinates for t = 0 to t = 5

Time tk Goalkeeper position Ball position

0 (2, 5) (11, 15)

1 (2, 4.444) (9.7, 13)

2 (2, 3.889) (8.4, 11)

3 (2, 3.333) (7.1, 9)

4 (2, 2.778) (5.8, 7)

5 (2, 2.222) (4.5, 5)

Table 2.
Robot and ball coordinates for t = 5 to t = 8

Time tk Goalkeeper position Ball position

5 (2, 2.222) (4.5, 5)

6 (2, 4.313) (3.667, 6.167)

7 2, 6.407 (2.834, 7.334)

8 (2, 8.5) (2, 8.5)

Tables 1 and 2 shows the positions for the ball and the goalkeeper at discrete
values of time. The interception for this scenario is shown in Fig. 9. The second
slide in the PowerPoint attachment shows the interception for a similar scenario.

8.4. Goalkeeper controlled in the orientation angle, non-accelerating ball

The goalkeeper starts from the initial position (2, 5). The ball moves in a straight
line according to the following equations:

xb = −0.866t + 12,

yb = 0.5t + 3,
(64)

with θb = 150◦, vb = 1. The initial line of sight angle is σ0 = −16◦.7. It turns
out that the goalkeeper also moves in a straight line (θg is constant). This scenario
is shown in Fig. 10, where two different speeds are considered (vg = 0.25 and
vg = 0.5). The goalkeeper’s path is different for different values of vg as shown in
Fig. 10. In both cases, the goalkeeper reaches the ball successfully.

8.5. Goalkeeper controlled in the orientation angle, accelerating ball

We consider two scenarios, where the ball starts from two different initial posi-
tions (12, 2) and (12, 8) with σ0 = −163◦.3 and σ0 = 163◦.3, respectively. The
two scenarios are shown in Figs 11 and 12. The trajectory of the ball presents a
slight curvature. In this case the robot path is also curved. In both scenarios the
robot reaches the ball successfully. In Fig. 12, the robot moves with two different
speeds (vg = 0.5 and vg = 1/3). Clearly, the goalkeeper path depends on the speed.
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Figure 10. Interception for the scenario of Section 8.4.

Figure 11. Interception for the scenario of Section 8.5, ball starting from (12, 2).

Figure 12. Interception for the scenario of Section 8.5, ball starting from (12, 8).
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9. CONCLUSIONS

In this paper, we presented a control strategy for a wheeled mobile robot goalkeeper
whose task is to intercept the ball before it goes inside the goal. Our control strategy
is designed based on the parallel navigation guidance law, where the robot moves
on lines which are parallel to the initial line of sight that joins the robot and the ball.
This strategy puts the robot on the interception course. We first derive a relative
kinematics model, which models the motion of the ball and the goalkeeper in polar
coordinates. The equation for the interception course is then derived based on the
kinematics model. Two different versions of the proportional navigation guidance
law are considered. Because of the particularity of the goalkeeper problem, a new
version of parallel navigation adapted to this case is suggested and used. Here,
the goalkeeper moves in a predefined path that covers the goal and is controlled in
the linear velocity. The particular case where the robot moves in the goal line is
considered in more detail where it turns out that the goalkeeper is not accelerating
when the ball is not accelerating and accelerates when the ball accelerates in
the linear velocity or orientation angle. In the second approach, the robot is
controlled in the orientation angle to stay in the intersection course. This approach
gives more flexibility to the path of the goalkeeper. In this case, the path of the
goalkeeper depends on the ball path, and the robot and the ball linear velocities
and initial positions. It is proven that the method allows a zero miss distance,
i.e. the interception is guaranteed under certain conditions. The control strategy
is illustrated by considering an extensive simulation for different scenarios, which
confirms our theoretical results.
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