
Formal Analysis of UML-Based Designs

Boumediene Belkhouche and Anastasia Nix
EECS Department
Tulane University

New Orleans, LA 70118
{bb,nix}@eecs.tulane.edu

Abstract

This paper describes a design specification and analysis
framework to support the OO design stage. Structural and
behavioral specifications of objects are integrated and for-
malized. To achieve this task, an object-oriented design
language that captures the structural and behavioral mod-
els was defined. An environment consisting of a graphical
user interface (GUI) and a processor for the language was
implemented. The GUI supports the generation of UML-
based designs. The major tasks of the processor are syn-
tactic and semantic analyses, and code generation. Thus,
designs can be evaluated and validated before implemen-
tation.
Keywords: object–oriented design, design specification,
formal analysis, code generation.

1 Introduction

Object-oriented design provides two distinct views of sys-
tems, the structural (static) view and the behavioral (dy-
namic) view. The structural view describes the static struc-
ture and relationship of the objects, while the behavioral
view describes the dynamic behavior of objects over time.
The techniques used in structural modeling are well devel-
oped to the point of being standardized (e.g., the UML ef-
fort). The behavioral view is concerned with how the sys-
tem changes as it progresses through time. It is typically
modeled with concepts such as objects, services, state and
state transitions, and message connections. Compared to
the structural model, concepts and notations used in be-
havior view across different methodologies vary signifi-
cantly. So far, no consensus appears to be emerging in
this area. Besides this lack consensus, there seems to be
a mushrooming of ad–hoc proposals all of which trying

to capture a specific feature. The result is an overflow of
notations which cannot be composed with each other, thus
causing more ad-hoc solutions. It is an atmosphere that
does not foster formality, abstraction, compositionality,
and scalability. Even though, formalisms to support OO
design are being developed ([1], [2], [3]), the mainstream
in the field of object-oriented methods is still dominated
by informal methods. These methods are typically char-
acterized by informal pictorial notations supplemented by
natural language textual descriptions. As a result, these
methods lack rigor. Our research addresses these issues
and provides a simple and effective solution.

The paper is organized as follows. Section 2 discusses
some of the issues associated with object-oriented analy-
sis. In Section 3 TOODL is presented. In Section 4 an in-
troductory overview of CSP-based modeling is given fol-
lowed by a description of CSP constructs used in our OO
modeling framework. A framework for object-oriented
behavior analysis using CSP is introduced. We then de-
scribe how CSP can be used to capture this object-oriented
behavioral model. Section 5 describes the language pro-
cessor implemented for our specification language. The
language processor performs syntax and semantic check-
ing on the specification of the model. In Section 6 the code
generation process is described. Section 7 summarizes this
work and suggests directions for future research.

2 Issues and Objectives

Within the OOD community, the state-based technique is
the major approach for behavioral modeling. This ap-
proach uses state and state transitions to describe the be-
havior and has become one of the most common tech-
niques. The UML has adopted it as its main behavioral

modeling tool. There are two major drawbacks with this
approach: state explosion and non-compositionality. It re-
quires all possible states of a system to be identified. The-
oretically, the specification of large systems can become
impractical to specify due to state explosion. Also, speci-
fications cannot be composed in a transparent way.

Our view on state-based approach is that it overspecifies
as a general tool for specification and it has an unnatural
fitting onto the OO execution model. A state-based ap-
proach captures object behavior at the expense of having
to enumerate all the possible states of the object. States
in this context imply internal states, and to specify inter-
nal states we have to look inside the object, not just its
externally visible behavior. The state-based approach vio-
lates the concept of treating an object as a black box at the
specification stage.

This paper addresses issues associated with the spec-
ification, analysis and evaluation of object-oriented de-
signs expressed in a UML-equivalent notation. That is,
UML designs are translated into a textual object-oriented
language (TOODL) and then analyzed. TOODL was de-
signed to capture the UML core [4]. A system to process
TOODL designs (compiler) was implemented and evalu-
ated. This system is used to analyze and validate OO de-
signs. The proposed study is intended to provide a frame-
work for object-oriented behavior analysis. The major ob-
jectives of this research are as follows:

1. To translate the UML designs into a formal notation.

2. To develop a framework for object behavior model-
ing based on the concepts of object life history and
Communicating Sequential Processes.

3. To implement a processor for the proposed language
to facilitate automated analysis, model validation,
and code generation.

4. To illustrate the feasibility of the proposed approach
and implementation by applying it to some existing
examples found in literature.

3 An Object-Oriented Design Lan-
guage (TOODL)

Our goal is to integrate structural and behavioral OO
modeling by developing a formal framework for object–
oriented design with an emphasis on behaviorial specifi-
cation and analysis. The major objectives of this research

are as follows: (1) to provide a GUI supporting UML de-
signs; (2) to translate these graphical designs into a formal
intermediate representation; (3) to develop an approach
for object behavior modeling based on the concepts of ob-
ject life history and Communicating Sequential Processes
(CSP); (4) to implement a processor for the proposed lan-
guage in order to facilitate automated analysis and vali-
dation; and (5) to illustrate the feasibility of the proposed
approach and implementation by applying it to some ex-
amples found in the literature.

In our approach, we treat the specification of each ob-
ject as a black box. This is consistent with the OO princi-
ple of encapsulation or information hiding. In the OO se-
mantic model, message communications are a major part
of how an object can affect and be affected by other ob-
jects or entities outside of its black box boundary. It is
this communication and other forms of input/output of the
object that we wish to model. An OO model should be
able to capture abstraction, compositionality, communica-
tion, and concurrency. The CSP model fits well into the
OO execution model. Multiple processes are multiple ob-
jects that must synchronize their I/O, or message commu-
nications in order to interact with one another. The issue
of interaction between objects is yet another advantage of
using CSP over state–based approaches. In state-based ap-
proaches, the STD technique for modeling object life cy-
cle is unable to capture interactions between objects. Thus
a separate and disjoint technique is required for modeling
object interactions. In the CSP approach only one single
technique is needed to capture both object life history and
object interactions. Model validations and checkings as
well as other forms of analysis can be performed on the
specification supported by its underlying formal concept.

The need for analyzability of designs motivated the defi-
nition of a textual language for expressing object–oriented
designs. This language is a synthesis of constructs pro-
posed in the literature. TOODL is used to describe the
structural and behaviroal components of an OO design.
That is, TOODL contains the necessary mechanisms to
define formally a set of classes and objects, the individ-
ual attributes and operations, all the relations that capture
the architectural view of the system, as well as express
the behavior of the design. Also, TOODL was designed
to make the mapping from the UML core into TOODL
straightforward.

The main components of TOODL will be explained us-
ing the abstract structure shown in Table 1. The basic unit
in TOODL is the design module which consists of the fol-
lowing three sections:

• IMPORT. The import section is used to import
classes that are externally defined.

• SUBJECT. A subject is a high-level view of a group
of interrelated classes. This view provides an upper
level of abstraction necessary to modularize the sys-
tem.

• CLASS. This section defines the class. The structure
of a class is detailed in Table 2.

Table 1. Design Module Syntax
BEGIN DESIGN identifier

IMPORT import list

SUBJECT SECTION

CLASSLIST

END DESIGN identifier

Table 2. Class syntax
CLASS identifier

BODY properties

ATTRIBUTES attributes list

RELATIONS relations list

OPERATIONS operationslist

BEHAVIOR behaviorslist

END identifier

The class section contains six further sections: CLASS,
BODY, ATTRIBUTE, RELATIONS, OPERATIONS, and
BEHAVIOR. The CLASS section identifies the name
of the class. The BODY section defines four proper-
ties relevant to implementation: CARDINALITY, CON-
CURRENCE, PERSISTENCE, and VISIBILITY. The AT-
TRIBUTE section defines the associated attributes. In the
RELATIONS section, two relationships are used to define
the structure. ISA defines the inheritance structure, includ-
ing multiple inheritance. HASA defines the composition
whole–part structure. The interface and interaction is de-
fined by the INSTANTIATES and CALLS relation. The
INSTANTIATES models static association, while CALLS
models the dynamic message connection. The OPERA-
TIONS section defines the propotypes of the operations
of the given class. The BEHAVIOR section specifies the
behavior of objects and operations.

Figure 1 summarizes the constructs provided by
TOODL. It supports the fundamental OO concepts of ab-
straction, encapsulation, modularity, hierarchy, and inher-
itance.

IMPORT

SUBJECT
CONTAINS

RELATIONS

CLASS/OBJECT

CARDINALITY
CONCURRENCE
PERSISTENCE

VISIBILITY

BODYMODULE

BEHAVIOR

ATTRIBUTES

RELATIONS

OPERATIONS

ISA
HASA
INSTANTIATION
CALLS

Figure 1: Constructs of TOODL

4 OO Behavior Modeling

To address the issues of state explosion, compositionality,
abstraction, and formality, we developed a CSP-based be-
havioral model. The model consists of a number of objects
(viewed as CSP processes) making up an OO system. Ob-
jects communicate with each other using communication
events, and interacts with the environment with general
events. Communication events are the sending and receiv-
ing of messages between objects. Exchanging informa-
tion with the environment is captured by general events,
which are used to model interactions between the system
and the environment. The parallel composition construct
from CSP enables the description of the behavior of any
number of collaborating objects. This construct provides
the basis for a systematic approch to compose objects into
an abstract system.

To define the behavior of an object (name it Object Life
History or OLH), we perform the following steps: (1)
identify each object’s events (alphabet); (2) construct a
CSP-based specification of each object; and (3) compose
the overall system by integrating the objects. The alphabet
includes all the communication events and general events
the object may be involved in over its lifetime. Both type
of events may be either incoming or outgoing. To iden-
tify the alphabet, we examine the product of the structural
analysis. Associations, services, and message connections
identified during the structural analysis can give us most if
not all of the events. If an event can be modeled as a mes-
sage connection, it is a communication event; otherwise it
is a general event.

Consider a simple car object with three relevant events,
move forward, backward, and stop. Let us now look at the
OLH for this car object. Event names are written in low-

ercase italic letters (move_forward, move_backward,
stop). The three events are general events because they
are events the car object is directly involved in with the
environment. The alphabet for the object car (denoted as
αCAR) is specified as:

αCAR = {move_forward, move_backward, stop}

Afterwards, we specify the OLH using CSP. The notation
e1 → e2 means perform event e1 then event e2. Thus,
the OLH for a car object that moves forward then stops or
moves backward then stops is specified as:

CAR = move_forward → stop

CAR = move_backward → stop

Oftentimes, choices between different actions are made.
The OLH for an object may have different next events de-
pending on some factors. The operator | is used to denote
a choice between two sequences of events:

(x → P | y → Q)

This indicates that the OLH either first engages in the
event x, and then behaves as specified by P , or it first en-
gages in the event y and then behaves as specified by Q.
This is pronounced “x then P choice y then Q". If our car
object can move either forward or backward, then stops,
and then can move in either direction again, this can be
specified by:

CAR = (move_forward → stop → CAR

| move_backward → stop → CAR)

For objects that are involved in the creation of other
objects, the instantiation is modeled as a communication
event. The class name to be instantiated is used to denote
the channel name, and the message is instantiated. For
example, if the above car object creates a trip object ev-
erytime it is moved, we can denote it as

CAR = move_forward → trip!instantiate

→ stop → CAR

Let us now look at a different, a more complicated car sys-
tem example and illustrate its specification. The structure
of the car system consists of four different objects: the car,

engine, transmission, and brake objects, which are identi-
fied during the structural analysis. The only motion of in-
terest is moving forward, moving backward, and stopping.
The three motions represent the effects the car object have
on its relationship with the environment and are modeled
as general events. The interactions of the car object with
its component objects are message communications be-
tween objects and are modeled as communication events.
A complete specification of the Car System is shown in
Appendix A and the corresponding C++ code is shown in
Appendix B.

Composition of objects is supported by the the paral-
lel composition operator. This operator allows us to com-
pose a number of objects into a single object. The result-
ing composite object is treated as a single object, and can
in turn be combined with other objects. This is a simple
and powerful architectural model adopted from CSP. In the
case of the car example, a composite car_system object is
created by combining the car, engine, transmission, and
brake objects. Communication events that are concealed
within the object boundary are considered internal to this
new object and will not be shown in the model.

CAR_SY STEM = (CAR ‖ TRANSMISSION

‖ ENGINE ‖ BRAKE)

5 The Analysis System

The function of the analysis system is to perform auto-
mated model checking and verification on the specifica-
tion model. The analyses performed by this system are
relevant to object–oriented specification model as well as
to some CSP properties. The processor accepts an input
source file, processes the design specification, and gener-
ates several outputs. The outputs of the analysis are in-
formation intended to aid analysts in their process of con-
structing a valid OO model.

The major phases of the analysis are syntactic and se-
mantic analyses. Syntax checking is performed on the
specification to validate the legal use of language expres-
sions. The semantic analysis is carried out by the follow-
ing processes:

1. Check attributes section semantics. An attribute must
obey the following rules: (1) an attribute cannot be
duplicated in the same object; and (2) an attribute
type must be an object of the design or an imported
object.

2. Check relations section semantics. The lists of ISA,
HASA, INSTANTIATES and CALLS relations are
explored to detect undefined related objects and ob-
jects defined more than once.

3. Check the main semantics. The main semantic anal-
ysis is performed on the operation list of each object,
i.e., here is where the interface among the objects is
established. The issues are whether ISA and HASA
relations are exploited, as well as the visibility of the
objects.

4. Event declaration and usage check. For each
OLH, these rules are enforced: (1) all events
used must be declared in the alphabet; (2) All
alphabets declared must be used (3) duplications
are not allowed in the alphabet; and (4) events
must be in one of three forms: (a) a general
event: <event>; (b) an input communication event:
<channel>?<message>; or (c) an output com-
munication event: <channel>!<message>.

5. Process consistency check: validate the use of OLH.

6. Communication consistency check. This check is to
ensure the consistency of message connections and
identify spurious messages. For each communication
event, the channel name must correspond to an OLH
of the system. For each output communication event,
there must be an appropriate input communication
event at the other end of the communication chan-
nel to complete the message connection. The channel
name, input/output relationship, and message name
must be consistent. Formally, for a system that satis-
fies the event declaration and usage check, if P and Q

are any two OLHs in the system, then the following
must be true for all OLH P and Q:

∀c!v1 : αP.(c = Q) ⇒ ∃c?v2 : αQ.((c = P)

∧(v1 = v2))

Extending the above property for input communica-
tion events, for a system that satisfies the event decla-
ration and usage check, if P and Q are any two OLHs
in the system, then the following must be true for all
OLH P and Q:

∀c?v1 : αP.(c = Q) ⇒ ∃c!v2 : αQ.((c = P)

∧(v1 = v2))

7. Divergence check. According to Hinchey and Jarvis,
a direct opposite of deadlock is livelock. When dead-
lock occurs nothing will happen, but when a livelock
occurs the system is out of control. In some way live-
lock is worst than deadlock, deadlock does not com-
promise the safety of the system because nothing can
happen, whereas livelock does [5]. The inclusion of
the CSP parallel composition operator and the hiding
operator introduce the possibility of divergence.

8. Identify interface objects. Identify objects that inter-
act with the environment and specify their interac-
tions. Interface objects are objects that deal with the
environment directly.

9. Construct service relations. Construct service rela-
tionships or client/server relationships between ob-
jects. For each object, find the client objects related to
it according to services provided; and find the server
objects related to it according to services requested.

10. Object-dependency cycle check. Analyze the
client/server dependencies between objects. Indi-
cate any cycles that exist in the dependency graph.
Client/server relationships in the OO message pass-
ing paradigm correspond to the messages an object
receives and sends. In general, any message an ob-
ject receives is a request by the sender of the mes-
sage for some service to be performed; the object act
as a server. Any message an object sends is a request
to the receiver of the message for some service to be
performed; the object acts as a client. These depen-
dencies between objects are analyzed for cycles. By
uncovering cycles in object dependency, we gain an
insight into the possibility of a deadlock.

11. Identify groups of cohesive classes. The identifica-
tions suggest the grouping of cohesive classes into
subsystems by composition. This can also be used
to indicate couplings for quality assessment. Classes
not related statically by either superclass/subclass or
composition should be loosely coupled. One obvious
criteria for assessing cohesiveness between objects in
our model is to base the cohesiveness on the number
of message connections. Cohesive groups of classes
are closely tied by a number of message connections,
whereas non–cohesive groups of classes have few or
no message connections.

12. Identify all communication channels in the system
and list their alphabet. A communication channel is

unidirectional and connects exactly two objects. The
alphabet of a channel consist of the set of messages
that can be send through the channel.

6 Code Generation

Once a design is validated, code generation begins. Ap-
pendix B shows the C++ code generated from the object–
oriented design shown in Appendix A. It consists of class
headers for each class in the design and the executable
code for each class OLH. Note that the statements are the
events in the OLH. Since events are uninterpreted, a possi-
ble simulation would just generate the trace as defined by
the OLH. Another possibility is to assign an interpretation
to events (i.e., refine them) by associating a function with
each event. In either case, we now have a tool to observe
the dynamic behavior of the design.

7 Conclusion

An object-oriented framework to formally specify and an-
alyze OO designs was developed. This framework con-
sists of an OOD GUI, an object-oriented design language,
a subset of CSP, and a processor. The OO behavioral
model we proposed is based on externally visible behav-
iors of objects modeled by the notion of object life history
is used to capture the behavior specification using CSP. A
system to process OO designs expressed was implemented
and evaluated. This system performs various analyses on
the specification. These analyses are carried out to ensure
that the specification defines a valid model and to give an-
alysts insight into the model. Furthermore, C++ code is
generated for valid designs.

References

[1] Evans, A. S., France, R. B., Lano, K. C., and Rumpe,
B., “The UML as a Formal Modeling Notation,” in
UML’98 – Beyond the Notation, 1998.

[2] Egyed, A. F., “Automatically Validating Model Con-
sistency During Refinement,” tech. rep., University of
Southern California, 2000.

[3] Engels, G., Groenewegen, L., Heckel, R., and Kuster,
J. M., “A Methodology for Specifying and Analyzing
Consistency of Object-Oriented Behavioral Models,”
2001.

[4] Booch, G., Rumbaugh, J., and Jacobson, I., The Uni-
fied Modeling Language User Guide. Addison Wes-
ley, 1999.

[5] Hinchey, M. and Jarvis, S., Concurrent Systems: For-
mal Development in CSP. McGraw-Hill, 1995.

APPENDIX A

OOD of the Car System Expressed in TOODL

begin design car_system

begin package car_system
class Car

attributes:
private string: model;

private int: year;

relations:
hasa Engine card[1...1],

Transmission card[1...1],
Brake card[1...1];

operations:
private

move(string:direction): NULL;

private stop(): NULL;
end Car

class Engine

operations:

public run(): bool;
public idle(): bool;

end Engine

class Transmission

attributes:
private string: Transmission_state;

operations:
public shift(string:t_state): string;

end Transmission

class Brake

operations:
public apply(): bool;

public release(): bool;
end Brake

begin behavior car_system

OLH Car
alphabet

Car = {move<forward>,

move<backward>,

stop<>, Engine!idle<>,
Transmission!shift<neutral>,

Transmission!shift<forward>,
Transmission!shift<backward>,

Engine!run<>, Brake!apply<>,

Brake!release<>}

Car = (move<forward> -> Brake!apply<>
-> Transmission!shift<forward> ->

Brake!release<> -> Engine!run<>

-> Car
| move<backward> -> Brake!apply<>

-> Transmission!shift<backward> ->
Brake!release<> -> Engine!run<>

-> Car | stop<> ->
Transmission!shift<neutral> ->

Engine!idle<> -> Brake!apply<>)

OLH Engine

alphabet
Engine = {Engine?run<>, Engine?idle<>}

Engine = (Engine?run<> -> Engine
| Engine?idle<> -> Engine)

/** Definition of Transmison

and brake omitted

**/
end behavior car_system

end package car_system
end design car_system

APPENDIX B

C++ Code Generated from the OOD of the Car System

//Car.h

class Car {
private:

string model;
int year;

public:
Car();

~Car();

void move(string);
void stop();

};

//Brake.h

class Brake {

private:
public:

Brake();
~Brake();

bool apply();

bool release();
};

//Transmission.h
class Transmission {

private:

string Transmission_state
public:

Transmission();
~Transmission();

string shift(string);
};

//Engine.h

class Engine {
private:

public:
Engine();

~Engine();

bool run();
bool idle();

};
// Executable Code

process Car {

move(forward);
Brake!apply();

Transmission!shift(forward);
Brake!release();

Engine!run();
Car();

CHOICE

move(backward);
Brake!apply();

Transmission!shift(backward);
Brake!release();

Engine!run();

Car();
CHOICE

stop();
Transmission!shift(neutral);

Engine!idle();

Brake!apply();
}

// Further code omitted

