
A Branching Time Semantics for the Ada∗Rendezvous Mechanism †

Boumediene Belkhouche R.Raymond Lang Chung Wa Ng

Computer Science Dept. Computer Science Dept. Computer Science Dept.

Tulane University Xavier University Moorehouse College

New Orleans, LA New Orleans, LA Atlanta, GA

Abstract

Branching-time semantics based on domains built

upon tree structures have been proposed to model con-

current processes. However, the resulting models im-

posed severe restrictions to ensure monotonicity and

compositionality. To address these issues, we con-

struct a semantic domain without sacrificing these two

properties. We also provide a simple and faithful se-

mantics of the Ada rendezvous mechanism.

1 Introduction

We propose a tree-based semantic domain to cap-
ture the denotational semantics of a uniform language
supporting the rendezvous mechanism. The domain
we construct provides a means of distinguishing pro-
cesses which share the same language but which differ
as to their respective choices points. In other words,
we develop what is commonly known as a branching
time semantics [2].

A detailed presentation of the language is given in
the next section. In Section 3, we explain the structure
of the domain. This will form the basis of our model.
Section 4 gives definitions of the semantic function
and the finite elements of the signature. Section 5
proves monotonicity and continuity in order to give a
meaning to infinite processes.

2 The Language L

The language we consider supports nondetermin-
ism and synchronization based on the rendezvous. In
order to focus more closely on the semantic issues in-
volved in our language, the actions are left uninter-
preted. Thus, our uniform language L is defined as a

∗Ada is a registered trade mark of the US DoD (AJPO)
†Published in HICSS-29, January 1996

successive refinement of three sublanguages (L1, L2,
L3) described by the following production rules:

L1

p ::= skip | stop | a | p; p | p + p

L2

p ::= skip | stop | a | p; p | p + p | p ‖ p

L3

p ::= skip | stop | a | p; p | p + p | p ‖ p

| σ | σ : p | µx.p

We now give a brief informal description of each of
the language constructs.

1. the nullary action skip. The sole result of this
process is immediate normal termination.

2. the nullary action stop. The sole result of this
process is immediate deadlock.

3. an elementary action a ∈ Act. Actions of this
kind are left uninterpreted in the sense that they
are given no specification either in concrete terms
or in terms of state transforming functions. The
set Act of actions is assumed countable.

4. the sequential composition of two processes, sig-
nified by p;p.

5. the nondeterministic choice between two pro-
cesses: p + p.

6. the parallel composition of two processes: p ‖ p.

7. σ denotes a request to rendezvous with another
process which has entry point σ. The action σ

represents an entry call.

8. σ : p, signals a readiness to accept a rendezvous
and execute critical region p. The action σ : p
represents an entry accept.

9. µX.p expresses infinite repetition of the atomic
actions of p.

3 The Semantic Domain

Two major approaches modeling processes as tree
structures have been proposed. Metric spaces are used
to build semantic domains in [3, 2]. One serious draw-
back of this approach is that sequential composition
is restricted to processes whose trees are full trees
(i.e., all branches are of the same depth). Such a
restriction was implicitly motivated by the need to
preserve monotonicity of the sequential composition
operator. Indeed, for trees that are not full, sequen-
tial composition is not monotonic. Acceptance trees
are used in [4, 5]. This approach results in a very
complicated nondeterministic composition, making it
non-compositional. In departure from this, we allow
our domain to contain trees with branches of arbi-
trary depth without sacrificing monotonicity or com-
positionality.

3.1 Tree Representation

A process (i.e., an expression of the language) is
represented as a tree that is encoded linearly as a set.
Such a set is defined structurally in the following way.

(1) skip is encoded as {ε}. Pictorially, a • labelled
SKIP is used. The • stands for a closed tree
node.

(2) stop is encoded as {δ}. Pictorially, a ◦ labelled
STOP is used. This is called an open node.

(3) a is encoded as {〈a, SKIP 〉}. Pictorially, a rooted
tree with a single branch labelled a and a leaf
node labelled SKIP is used.

(4) a;p is encoded as {〈a, t〉}. Pictorially, if t is
the tree representing the expression p, and t′ the
branch representing a, then the new tree for a;p

is formed by superimposing the leaf node of t′ and
the root node of t. The resulting node is not la-
belled. The new root node is the root node of
t′.

(5) p+q is encoded as {p′, q′}, where p′ and q′ are the
encoding for p and q, respectively. Pictorially,
the roots of the trees corresponding to p and q

are superimposed to form a single root.

(6) µX.p is encoded as { sn: s is the tree encoding
for p and n ∈ ω }.

Therefore, each process expression is a set. We will
use SKIP to stand for the set {ε}, and STOP to
stand for the set {δ}.

We construct the semantic domain for our language
as the limit of a series of sets Pn. Informally, each Pn

contains all the possible processes in which the longest
branches are of length n. Formally, let P0 be defined
as {∅, SKIP, STOP}. These eleemnts are (1) ∅, the
process about which we have no information (bottom);
(2) SKIP = {ε}, the process which does nothing and
terminates normally; and (3) STOP = {δ}, the pro-
cess which does nothing and halts abnormally. Then,
for every n > 0, let Pn be defined as:

Pn = P((Act × (Pn−1 − {∅})) ∪ {SKIP, STOP})

where P(·) signifies the power set. In building each
set Pn, we remove ∅ from Pn−1 and take the cross
product of this with Act. The cross-product forms a
set of pairs. We then take the union of this set of pairs
with the set {ε, δ}. Pn is defined as the power set of
this union. First of all, we prevent pairs of the form
〈a, ∅〉 from arising by removing the empty set from
Pn−1 before forming the cross product with Act. By
forming the cross product of Pn−1 and Act at each
step, the creation of a new Pn adds one to the length
of each path of each tree in Pn−1. However, if we do
not add the elements ε and δ to each cross product,
Pn will contain only processes in which each branch
has a depth of n. We would not obtain processes with
branches of varying depths; but it is precisely these
types of processes that we explicitly wish to include in
our domain. For example, with Act = {a, b}:

P1 = P((Act × (P0 − {∅})) ∪ {SKIP, STOP})
= P({a, b} × {SKIP, STOP}) ∪ {SKIP, STOP})
= P({SKIP, STOP, 〈a, SKIP 〉 , 〈b, SKIP 〉 ,

〈a, STOP 〉 , 〈b, STOP 〉})

The definition of Pn that we have given may appear
contrived at first glance. However, on closer inspec-
tion, the reader will find that we have assigned an
interpretation to sets containing pair(s) of the form
〈a, ∅〉. Such sets arise if Pn is given the much simpler
definition P(Act×Pn−1), which is more common in the
literature [2]. In our formulation, sets such as {〈a, ∅〉}
do not arise; but the three processes {〈a, SKIP 〉},
{〈a, STOP 〉}, and {〈a, SKIP 〉 , 〈a, STOP 〉} do ap-
pear. Informally, if processes containing pairs of the
form 〈a, ∅〉 are regarded as abbreviations for all the
processes containing either 〈a, SKIP 〉, 〈a, STOP 〉, or
both in the corresponding position, our formulation of
the domain simply forces the expansion of this abbre-
viation.

A non-empty set is interpreted as non-deterministic
choice among its elements. Each pair, then, repre-
sents a primitive action followed by a nondeterministic

choice among the elements of some set. The nesting
of sets which occurs in every Pn for n ≥ 2 indicates
that the domain we are building is tree structured.
Intuitively, the pairs map to branches and the non-
empty sets to nodes. This is important as we intend
to provide a branching time semantics which will dif-
ferentiate between (a; b) + (a; c) and a; (b + c).

Pn being a power set, it is a complete algebraic
lattice, and thus a domain. The algebraicity of Pn

allows us to define infinite processes in terms of finite
ones [1]. At this point, certain features of the domain
are already apparent:

1. For every set S ∈ Pn, e ∈ S is either (1) ε, (2)
δ, or (3) a pair of the form 〈a, S〉 where a ∈ Act

and S ∈ Pm for some m ≤ n. Later, we will
prove that this feature characterizes our domain
in the sense that it is necessary and sufficient for
all elements of the domain.

2. Each element of a given Pn is unique (this fol-
lows immediately from the set operations used to
construct each Pn).

3. For all n > 0, Pn−1 ⊆ Pn

4. The elements of each Pn correspond to all the pos-
sible processes which can be constructed from the
atomic actions of Act and in which all branches
have depth ≤ n. This includes both all possible
sequences of actions and all possible choice points
for sequences of actions which share a common
prefix.

Because of Property 4, processes which produce
the same language but differ in their respective choice
points will have distinct representations. For exam-
ple, the processes p = a; (a + b) and q = (a; a) + (a; b)
appear separately in P2 as

{〈a, {〈a, SKIP 〉 , 〈b, SKIP 〉}〉}

and

{〈a, {〈a, SKIP 〉}〉 , 〈a, {〈b, SKIP 〉}〉}

Furthermore, because

{〈a, SKIP 〉 , 〈b, SKIP 〉} = {〈b, SKIP 〉 , 〈a, SKIP 〉}

we can predict that the non-deterministic choice op-
erator will be both commutative and associative.

The semantic domain is the limit of Pn as n ap-
proaches infinity:

Pω
def
= lim

n→∞

Pn

Property 1 There is a property of the elements
of Pω which is necessary and sufficient for a set to
be included in Pω: ∀S, S ∈ Pω iff ∀e ∈ S one of the
following holds:

(i) e = SKIP

(ii) e = STOP

(iii) e = 〈a, S′〉 for some a ∈ Act and some S ′ ∈
(Pω − {∅}).

In order to prove that Property 1 characterizes Pω , we
must first prove the following lemma:

Lemma 1 ∀S, T ∈ Pω , S ∪ T ∈ Pω.

Proof Let S and T be arbitrary elements of Pω.
Then since each element of Pω is an element of Pn for
some n, we may infer that S ∈ Px and T ∈ Py, for
some x, y. There are three cases to consider:

(i) x = y, then S and T are elements of the same
power set, namely Px, and S ∪ T must also
be ∈ Px, since Px is a power set. Therefore
(S ∪ T) ∈ Pω.

(ii) x > y, then Py ⊆ Px since for all n, Pn ⊆
Pn+1. This implies that T ∈ Px. Since S

and T are both ∈ Px, (S ∪ T) ∈ Pω.

(iii) x < y, this case is identical to case 2. 2

We now prove that Property 1, described above, holds
for any element of Pω and that any set S that possesses
Property 1 is an element of Pω.

Lemma 2 ∀S, S ∈ Pω iff ∀e ∈ S, Property 1
holds.

Proof Let S be some element of Pω

⇒ S ∈ Pn, for some n. The proof is by induction
on n.

Also, let S be a set such that Property 1 holds
⇒ S ∈ Pω.

⇒ S ∈ Pn, for some n

(1) if n = 0 ⇒ S ∈ P0 = {∅, SKIP, STOP}
and Property 1 holds.

(2) if n > 0 ⇒
Pn = P((Act × (Pn−1 − {∅})) ∪ {SKIP, STOP})
⇒ S ∈ P((Act × (Pn−1 − {∅})) ∪ {SKIP, STOP})
⇒ S ⊆ ((Act × (Pn−1 − {∅})) ∪ {SKIP, STOP})
⇒ ∀e ∈ S,

(i) e = SKIP , or
(ii) e = δ, or
(iii) e = 〈x, y〉 for some x ∈ Act

and y ∈ Pn−1 − {∅}
then Pn−1 − {∅} ⊆ Pω ⇒ y ∈ Pω

⇒ Property 1 holds.

S has Property 1 ⇒ S ∈ Pω

By induction on the size of S where Sn denote S such
that |S| = n,

Base Case: |S| = 1, S = {e}
(i) if e = ε then S = SKIP ∈ Pω

(ii) if e = δ then S = STOP ∈ Pω

(iii) if e = 〈a, S′〉 ∈ S

for some a ∈ Act and S′ ∈ (Pn − {∅}) for some n
⇒ e ∈ Act × (Pn − {∅})
⇒ {e} ∈ P(Act × (Pn − {∅})) ⊆ Pn+1

⇒ S ∈ Pn+1 ⊆ Pω

⇒ S ∈ Pω

Induction Step: |S| = n.

Assume that Sn = {e1, e2, . . . , en} ∈ Pω

where ∀ 1 ≤ i ≤ n, ei = 〈a, S′〉
for some a ∈ Act and S′ ∈ (Pm − {∅}) for some m
Sn+1 = {e1, e2, . . . , en, en+1}
where en+1 satisfies one of the three subcases
of Property 1
Sn+1 = Sn ∪ {en+1}
Since Sn ∈ Pω by induction,
and{en+1} ∈ Pω by the Base Case
⇒ Sn+1 ∈ Pω by Lemma 1 2

In order to show that Pω is a domain, we must
(1) define an ordering on its elements; (2) show that
there is a least element in Pω ; and (3) show that every
ordered chain of elements has a least upper bound
(lub).

3.2 Ordering

We define an ordering relation on processes, v:
Pω × Pω. The relation v is defined as follows:

(i) ∅ v p, ∀p ∈ Pω

(ii) SKIP v p, ∀p ∈ (Pω − {∅, STOP})

(iii) STOP v p, ∀p ∈ (Pω − {∅, SKIP})

(iv) ∀p, q ∈ Pω, p v q iff p ⊆ q or p ⊂′ q.

Where ⊂′ is defined as follows. Assume p = {〈x, T 〉}
and q = {〈y, R〉}. Then p ⊂′ q iff

(i) x = y, and

(ii) ∀Ti ∈ T ∃Rj ∈ R : {Ti} v {Rj}

This ordering conveys the notion that the tree p

can be embedded from the root in the tree q (i.e., p is
tree-like prefix of q). In order to demonstrate mono-
tonicity for each of the two basic binary operators in
the signature (+ , ;) we need to extend the ordering
relation, v: Pω × Pω , to v′: (Pω × Pω) × (Pω × Pω)
such that:

∀p, q, p′, q′ ∈ Pω, (p, q) v′ (p′, q′) iff p = p′ and q v q′

(Pω ,v) is a partial order because

(i) ∀p ∈ Pω, p v p; and

(ii) ∀p, q ∈ Pω, p v q and q v p ⇒ p = q; and

(iii) ∀p, q, r ∈ Pω, p v q and q v r ⇒ p v r.

A chain of processes is a sequence X = < xi >i

such that xi v xi+1, i = 0, 1. . . . The least upper
bound (lub) of such a chain X ⊆ Pω is that element
y ∈ Pω such that

(i) ∀x ∈ X, x v y

(ii) ∀z ∈ Pω, (∀x ∈ X, x v z ⇒ y v z)

Since Pω is defined in terms of power set, Pω is a
lattice and every chain of processes X = < xi >i⊆ Pω

has a least upper bound. Moreover, since ∅ v p, ∀p ∈
Pω, ∅ is the least element of Pω. Therefore our domain,
the triple (Pω,v, ∅), is a complete partial order. We
now proceed to describe the mappings from TΣ onto
this domain.

4 Semantics of L

Given this model, L is characterized by the follow-
ing axioms:

(A1) p;skip = p

(A2) skip;p = p

(A3) stop;p = stop

(A4) (p;q);r = p;(q;r)

(A5) p + p = p

(A6) p + q = q + p

(A7) (p + q) + r = p + (q + r)

It should be noted that these axioms are indeed
compatible with the informal semantics of the ren-
dezvous mechanism.

4.1 Semantic Function

The semantic function TR : L 7→ Pω maps an ex-
pression in the language into an element of the se-
mantic domain corresponding to the tree depicting the
process signified by that expression. TR is defined as
follows:

(i) TR[skip] = SKIP = {ε}

(ii) TR[stop] = STOP = {δ}

(iii) TR[a] = {〈a, SKIP 〉}, for each a ∈ Act.

The behavior of TR over complex expressions is
given below for each of the functions in the signa-
ture. The meaning of TR[p] for a term of the form
f(p1, p2, . . . , pk) is given in terms of its corresponding
semantic function fTR. That is: for every f of arity k

in L

TR[f(p1, p2, . . . , pk)] =
fTR(TR[p1], TR[p2], . . . , TR[pk])

The meaning of the finite functions fTR are now
presented. In doing so, we also show that TR satis-
fies the axioms given above. After we have given the
meaning of TR over complex expressions, it can be
easily shown that TR is a well-defined function and
that it is a homomorphism.

In the interest of readability in the discussion of the
properties of the finite functions, we relax our notation
slightly in order to permit infix expression of terms
such as f(p1, p2, . . . , pk). Also, we will overload the
meaning of the operators + , ; by allowing them to
signify either the syntactic construct or the semantic
meaning. In general, we will use p + q to signify an
expression of the language, and p + q to denote its
meaning in Pω.

Sequential Composition In the sequential compo-
sition of two expressions, we form a new tree by at-
taching the tree corresponding to the second argument
to all the leaf nodes labelled SKIP of the tree corre-
sponding to first argument. Thus, wherever SKIP

appears in the first argument as a leaf node label, this
leaf node is replaced by the subtree of the second argu-
ment. Formally, the function ;TR maps from Pω × Pω

to Pω and is defined as follows. For p, q process ex-
pressions and a, b ∈ Act

(i) TR[p; skip] =;TR (TR[p], SKIP) = TR[p]

(ii) TR[skip; p] =;TR (SKIP, TR[p]) = TR[p]

(iii) TR[p; stop] =;TR (TR[p], STOP) = STOP

(iv) TR[p; q] =;TR (TR[p], TR[q]) =
{〈a, S′〉 | 〈a, S〉 ∈ TR[p] and S′ = S ·TR[q])}

Where · is set concatenation defined as follows. Let
S1 = {t1, t2, · · ·} and S2 = {r1, r2, · · ·}. Then

S1 · S2 = {ti · rj : ti ∈ S1 and rj ∈ S2}

Without loss of generality, assume ti = 〈a, Ti〉 and
rj = 〈b, Rj〉. Then

ti · rj = 〈a, {〈Ti · b, Rj〉}〉

Where {〈Ti · b, Rj〉} = STOP for each T ′

i ∈ Ti which
is equal to STOP , and {〈Ti · b, Rj〉} = 〈b, Rj〉 for each
T ′

i ∈ Ti which is equal to SKIP .

Example

TR[a; p] =;TR ({〈a, SKIP 〉}, TR[p])

= {〈a, S′〉 | 〈a, SKIP 〉 ∈ {〈a, SKIP 〉}

and S′ = ;TR (SKIP, TR[p])}

= {〈a, TR[p]〉}

Notice that TR[p; skip] =;TR (TR[p], SKIP) =
TR[p] and TR[skip; p] =;TR (SKIP, TR[p]) = TR[p]
are special cases of the general case 4 of this definition.

Proposition 1 ;TR is well defined.

Proof The proof is by induction of the structure
of the process expression p.

Base Case: p = SKIP or p = STOP

SKIP ; q = q; SKIP = q ∈ Pω

STOP ; q = q; STOP = STOP ∈ Pω

Induction Step:

Assume ;TR is well defined for p′ ∈ Pn, i.e., p′; q ∈ Pω

Let p = a; p′

p; q = {〈a, S′〉 | 〈a, S〉 ∈ p and S′ = S; q}
Since p = {〈a, p′〉},
then S = p′ and S′ = p′; q ∈ Pω by induction
Therefore, p; q = {〈a, S ′〉} such that a ∈ Act

and S′ ∈ Pω

Since S′ 6= ∅ then S′ ∈ Pω − {∅}
Therefore, p; q satisfies Property 1
⇒ p; q ∈ Pω 2

Clearly, ;TR is not commutative since TR[a; b] =
{〈a, {〈b, SKIP 〉}〉} and this is not equal to TR[b; a] =
{〈b, {〈a, SKIP 〉}〉}.

;TR is defined in such a way as to satisfy axioms 1
through 3. ;TR can be shown to satisfy axiom 4 (asso-
ciativity) by a simple induction on r in the equation
p; (q; r) = (p; q); r.

The inductive step makes use of the fact ∀p ∈
Pω, (p); a = (p; a).

Proposition 2 ;TR is associative.

Proof The proof is by induction of the structure
of the process expression p.

Base Case: r = SKIP or r = STOP

(p; q); SKIP = p; q = p; (q; SKIP)
(p; q); STOP = STOP = p; (q; STOP)

Induction Step:

Assume ;TR is associative for r′ ∈ Pn

Let r = (r′; a), then r ∈ Pn+1

(p; q); r = (p; q); r′; a
= p; (q; r′); a by induction
= p; (q; r′; a)
= p; (q; r) 2

Non-deterministic Choice Since each process is
modeled by a set, the non-deterministic choice be-
tween two processes is simply the set-theoretic union
of the sets representing the respective argument pro-
cesses. The function +TR is defined as follows:

for p, q ∈ TΣ and a ∈ Act

TR[p+ q] = +TR(TR[p], TR[q]) = TR[p] ∪ TR[q]

where ∪ is set union.

Example

TR[skip+ a] = +TR(TR[skip], TR[a]) = SKIP ∪
{〈a, SKIP 〉} = {SKIP, 〈a, SKIP 〉}

+TR is a well defined function since it corresponds to
set-theoretic union in Pω.

The associativity and commutativity of +TR follow
immediately from the corresponding properties of set-
theoretic union. Therefore, +TR satisfies axioms 6 and
7. In addition, since S ∪ S = S, we have idempotency
(axiom 5) for +TR. That is, ∀p ∈ Pω, p + p = p.

Properties of the Semantic Function In defin-
ing TR over all the elements of the term algebra, we
have demonstrated that ∀p ∈ TΣ, TR[p] ∈ Pω . We are
now in a position to show that ∀p, q ∈ TΣ, p = q ⇒
TR[p] = TR[q]. The proof is by induction on t ∈ TΣ.

Proposition 3 TR is a function.

Proof

Base Case: t = skip or stop
(1) t1 = t2 = skip

TR[t1] = SKIP = TR[t2]
(2) t1 = t2 = stop

TR[t1] = STOP = TR[t2]
Induction Step:

Assume that TR is a function for t
such that depth(t) ≤ n

(1) Let t′
1

= a; t1 and t′
2

= a; t2
TR[t′

1
] = TR[a; t1] = {〈a, TR[t1]〉}

TR[t′
2
] = TR[a; t2] = {〈a, TR[t2]〉}

Then since t1 = t2 ⇒ TR[t1] = TR[t1]
by induction,
t′
1

= t′
2
⇒ TR[t′

1
] = TR[t′

2
]

(2) Let t′′
1

= t1 + t′
1

and t′′
2

= t2 + t′
2

then TR[t′′
1
] = +TR(TR[t1], TR[t′

1
])

and TR[t′′
2
] = +TR(TR[t2], TR[t′

2
])

and the result follows by induction and the fact
that +TR is a function over Pω × Pω

(3) Let t′′
1

= t1; t
′

1
and t′′

2
= t2; t

′

2

Then the argument for terms of the form p; q
follows from case (1).
Therefore TR is a function. 2

The proof that TR is a homomorphism follows im-
mediately from the definition of TR for terms of the
form f(p1, p2, . . . , pk). That is:

for every f of arity k in TΣ

TR[f(p1, p2, . . . , pk)] = fTR(TR[p1], TR[p2], . . . , TR[pk])

4.2 The Language L2: Concurrency

We now extend L1 to include arbitrary interleav-
ing of the atomic actions of two processes. The new
operation is denoted as ‖. The ‖ operator is syntacti-
cally reduced to the sequential composition and choice
operators; that is, we define rewrite rules on terms of
the form p ‖ p such that the resulting term does not
contain the parallel operator and its meaning thus de-
fined in terms of composition and choice. Let p and q

be processes. Define p ‖ q by cases:

1. p ‖ q = q ‖ p

2. p = skip

skip ‖ q ⇒ q

3. p = stop

stop ‖ q ⇒ q;stop

4. p = a, q = b

a ‖ b ⇒ (a;b) + (b;a)

5. p = (a;p′), q = (b;q′)

(a;p′) ‖ (b;q′) ⇒ (a;(p′ ‖ (b;q′))) +

(b;((a;p′) ‖ q′))

6. q = (q′ + q′′)

p ‖ (q′ + q′′) ⇒ (p ‖ q′) + (p ‖ q′′)

4.3 The Language L3: Synchronization

The intuition of synchronization we wish to formal-
ize is that of the rendezvous mechanism. Because of
this, synchronization is only meaningful when a syn-
chronizing process p is put in parallel with another
process q with which p may synchronize. σ denotes
a request to rendezvous with a parallel process at the
entry point σ. σ : r, signals a readiness to accept a
rendezvous and execute critical region r.

We interpret synchronization per se as unobserv-
able, i.e. it does not correspond to any element of Pω.
We therefore describe the synchronization operators in
terms of rewrite rules on the syntactic elements. Let
p, q be processes. Define p ‖ q by cases:

1. p = a; p′, q = σ; q′, and a 6= σ

a; p′ ‖ σ; q′ ⇒ a; (p′ ‖ σ; q′)

In this case, q has issued a synchronization call
to p, but p has not reached the synchronization
point. q is held in suspension and only actions
from p are executed.

2. p = σ; p′, q = a; q′, and a 6= σ

σ; p′ ‖ a; q′ ⇒ a; (σ; p′ ‖ q′)

In the complement to the previous case, p is ready
to accept a call, but q has not issued one. p is
held in suspension and only actions from q are
executed. The result is the same when there is a
critical region (i.e., p = σ : r; p′).

3. p = σ; p′, q = σ; q′

σ; p′ ‖ σ; q′ ⇒ p′ ‖ q′

Two processes have reached compatible synchro-
nization operators, but there is no critical region.
Execution continues as the interleaving of the op-
erations following the synchronization.

4. p = σ : r; p′, q = σ; q′

σ : r; p′ ‖ σ; q′ ⇒ r; (p′ ‖ q′)

Two processes have reached compatible synchro-
nization operators, and p contains a critical re-
gion r. The critical region is executed; and the
continuation is the interleaving of q’ with the op-
erations following the critical region.

5. p = skip, q = σ; q′

skip ‖ σ; q′ ⇒ σ; q′

If q should be held in suspension while waiting
for p to reach a synchronization point, and p ter-
minates without ever reaching such a point, the
result is simply σ; q′. If this resulting process is
in parallel with another process, then there is an
opportunity for progress to be made.

6. p = σ; p′, q = skip

σ; p′ ‖ skip⇒ σ; p′

In this case, an accepting process p is held in
suspension while waiting for q to reach a syn-
chronization point, and q terminates without ever
reaching such a point, resulting in the suspended
process p in parallel with skip. The result is σ; p′.
If this resulting process is in parallel with another
process, then there is an opportunity for progress
to be made.

7. p = stop, q = σ; q′

stop ‖ σ; q′ ⇒ σ; q′; stop

If q should be held in suspension while waiting
for p to reach a synchronization point, and p ter-
minates abnormally without ever reaching such a
point, the result will be this case: the suspended
process q in parallel with stop.

8. p = σ; p′, q = stop

σ; p′ ‖ stop⇒ σ; p′; stop

Finally, there is the case when an accepting pro-
cess p is held in suspension while waiting for q to
reach a synchronization point, and q terminates
abnormally without ever reaching such a point,
resulting in the suspended process p in parallel
with stop. The result is the same when p con-
tains a critical region (i.e., p = σ : r; p′).

5 Infinite Processes

Given the power set structure of Pω and the
Knaster-Tarski fixpoint theorem, we only need to
demonstrate that every fTR in the signature is mono-
tonic. Since our domain is algebraic, any function that
is monotonic is also continuous. Therefore, the mean-
ing of µX.p is obtained as the least upper bound of
directed sets in Pω.

Proposition 4 +TR is monotonic. That is,
(p, q) v (p′, q′) ⇒ (p + q) v (p′ + q′).

Proof p = p′ and q v q′

(i) q ⊂ q′ then q ⊆ q′ ⇒ p ∪ q ⊆ p′ ∪ q′ ⇒
(p + q) v′ (p′ + q′).

(ii) q ⊂′ q′ then compare p ∪ q to p ∪ q′. This
amounts to comparing q and q′. But, q v q′.
Therefore, (p + q) v (p′ + q′).

Therefore, +TR is monotonic. 2

For sequential composition, ;TR, we first extend the
definition given in section 4 to cover the case when the
first argument is infinite.

for p, q ∈ TΣ, and p infinite

TR[p; q] = TR[p]

Proposition 5 (Kleene theorem) The meaning of
the process expression µX.f(p) is given by

TR[µX.f(p)] =
⊔

i∈ω

f(∅)i

6 Conclusions

We have shown how an algebraic domain of arbi-
trary trees may be constructed and used to model the
behavior of a language supporting non-determinism,
parallelism, and synchronization. Thus, we were able
to give a formal meaning to finite and infinite processes
in a straighforward manner.

We chose to define v as we did because it captured
exactly the relation we wished our processes to have,
that is, that of prefix subtrees. It seems natural to
relate a process such as p = a = {〈a, SKIP 〉} with
q = a; (a + b) = {〈a, {〈a, SKIP 〉 〈b, SKIP 〉}〉}; on
the other hand, we wanted to disallow the relation
p′ = b = {〈b, SKIP 〉} with q = a; (a + b). Another
possible relation would be tree embedding, which in
our notation is captured by set inclusion, ⊆. We did,
in fact, consider ⊆ when we first developed v; it was
rejected because p = a 6⊆ q = a; (a + b).

References

[1] B.A. Davey and H.A. Priestley. Introduction to

Lattices and Order. Cambidge University Press,
1990.

[2] J.W. de Bakker, J.A. Bergstra, et al. Linear time
and branching time semantics for recursion with
merge. In Automata, Languages and Programming,

LNCS 154, pages 39–51. Springer-Verlag, 1983.

[3] J.W. de Bakker and J.I. Zucker. Processes and the
denotational semantics of concurrency. Information

and Control, 54:70–120, 1982.

[4] Matthew Hennessy. Acceptance trees. Journal of

the ACM, 32,4:896–928, 1985.

[5] Matthew Hennessy. Algebraic Theory of Processes.
MIT Press, 1988.

